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Abstract. This paper is a contribution to the theory of monotone operators in topo-

logical vector spaces. On the one hand, we provide new results concerning topological

and geometric properties of monotone operators satisfying mild continuity assumptions.

In particular, we give fairly general conditions on the operator to become single-valued,

to be closed and maximal. A fundamental tool is a generalization of the well-known

Minty’s Lemma that is interesting in its own right and, surprisingly, remains true for

general topological vector spaces. As a consequence of Minty’s, we obtain an extension

of a rather remarkable theorem of Kato for multi-valued mappings defined on general

locally convex spaces.

Introduction

Monotone operators have been extensively studied for the last fifty years in terms of their

structural properties ([7, 8, 15, 17, 18, 19, 25, 27, 29]), their connection with certain dynam-

ical systems ([4, 5, 10, 24, 28]) and the solution of functional equations ([1, 9, 20, 22, 23])

arising, for instance, in convex optimization and equilibrium problems, partial differential

equations and variational inequalities. A recent survey on the history of monotone operators

has been carried out by Borwein [3].

In the last fifty years, the study of monotone operators has been mostly developed for

reflexive Banach spaces, and especially for Hilbert spaces. However, many equilibrium and

optimization problems escape this setting. For instance, even the most classical optimal

control problems, where the cost functional is convex and the dynamics is given by a system

of linear ordinary differential equations, the natural functional setting is the nonreflexive

space of continuous (or continuously differentiable) functions defined on a given interval. As

far as we know, this class of problems has not been addressed using the monotone operator

theory approach. In fact, neither from a theoretical point of view, nor from the numerical

one. The present research attempts to set the basis of the theoretical background − in terms

of some topological, geometrical and algebraic properties − and laying the foundations for

future applications. More precisely, we study various properties of monotone operators de-

fined on topological vector spaces, as well as locally convex spaces, under suitable continuity

conditions.
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The paper is organized as follows: In Section 1 we present and extension of Minty’s

Lemma (see [19, 20, 2, 9, 11]) to topological vector spaces, and more general operators

and domains. This result, namely Lemma 1, is the key to establishing several new prop-

erties of monotone operators in locally convex spaces. Section 2 contains conditions under

which a monotone operator is single-valued and the points of its domain where this prop-

erty holds. Next, in Section 3, we study maximality and D-maximality. The main results

of this section extend a remarkable result of Kato to locally convex spaces (see Theorem

11 and also Corollary 13). Section 4 contains several results allowing to better understand

the relationship between maximality and different types of continuity. Finally, in Section 5,

we provide some closedness results concerning both the values and the graph of the operator.

We should mention that throughout this work, X will represent a real vector space.

1. An extension of Minty’s Lemma

Let X be a topological vector space with topological dual X∗ and denote by 〈x∗, x〉 the

action of x∗ ∈ X∗ on x ∈ X. For the purpose of this paper, an operator A defined on X

with set-values in X∗ shall be denoted by A : X → 2X
∗
. Its effective domain is the set

D(A) = {x ∈ X : Ax 6= ∅}.

An operator A : X → 2X
∗

is monotone if

〈x∗ − y∗, x− y〉 ≥ 0

for all x, y ∈ D(A) and all x∗ ∈ Ax, y∗ ∈ Ay.

An operator A : X → 2X
∗

is lower-demicontinuous if for every z0 ∈ D(A) and every

weak* open set O in X∗ with Az0 ∩ O 6= ∅, there exists a neighborhood U of z0 such that

Az ∩ O 6= ∅ for every z ∈ D(A) ∩ U.

The operator A : X → 2X
∗

is upper-demicontinuous if for every z0 ∈ D(A) there exists a

weak* open set W ⊂ X∗ with Az0 ⊂W , such that for every neighborhood U of z0 one has

Az ⊂W for every z ∈ U.

In addition, A is lower-demicontinuous (resp. upper-demicontinuous) on finite dimen-

sional subspaces if the restriction of A to D(A) ∩ Y is lower-demicontinuous (resp. upper-

demicontinuous) for any finite dimensional subspace Y ofX. Finally, A is lower-hemicontinuous

(resp. upper-hemicontinuous ) if it is lower-demicontinuous (resp. upper-demicontinuous)

on line segments. For the single-valued case, the definitions mentioned above coincide with

the concepts of demicontinuity and hemicontinuity introduced by Minty [20] and Browder

[6].

As we shall see, lower-hemicontinuous monotone operators have interesting topological

and geometrical properties, even in topological vector spaces. We begin by establishing an

extension of a key result due to Minty (see Lemma 1), that is interesting in its own right.
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Let D ⊂ X be a nonempty set. A point z ∈ X is densely sequentially approachable within

D if there exists a subset Dz ⊂ X, whose closure contains D, such that for all x ∈ Dz, there

exists a sequence of positive numbers (tn) ⊂ R+, decreasing to 0 with

z + tn(x− z) ∈ D for all n ∈ N.

This notion is weaker than one of being surrounded densely by D, introduced by Minty

in [20]. We denote by SA(D) ⊂ D the set of points of D that are densely sequentially

approachable within D. The set D is densely sequentially approachable (SA, for short) if

D = SA(D).

Next, we give some examples of this new notion.

(1) Clearly, int(D) ⊂ SA(D). As a consequence, every open set is SA. The same is

true for (algebraically) relatively open sets.

(2) Every quasi dense set is SA. Recall that, following [15], a set D is quasi-dense if

for each z ∈ D there exists a dense subset Mz of X such that for each v ∈ Mz,

z + tv ∈ D for all sufficiently small t > 0.

(3) If D is star-shaped with center z, then z ∈ SA(D). Therefore, every convex set is

SA.

(4) For the spiral D0 = {(e−t cos(t), e−t sin(t)) ∈ R2 : t > 0}, the origin is sequentially

approachable within D0.

(5) Let Dc
0 be the complement of the set D0 defined above. It is a thick spiral containing

the origin. Clearly (0, 0) ∈ SA(Dc
0). The remaining points of Dc

0 are interior, thus

also belong to SA(Dc
0). Therefore, this rather exotic set is SA.

Lemma 1. Let X be a topological vector space, let A : X → 2X
∗

be a monotone and

lower-hemicontinuous operator, and let z ∈ SA(D(A)). The following are equivalent:

(i) 〈x∗, x− z〉 ≥ 0 for all x ∈ D(A) and all x∗ ∈ Ax;

(ii) 〈z∗, x− z〉 ≥ 0 for all x ∈ D(A) and all z∗ ∈ Az.

Proof. Due to the monotonicity of A, it is enough to show that (i) implies (ii). Let z∗ ∈ Az.
Since z is densely sequentially approachable within D(A), there exists a set Dz ⊂ X with

D(A) ⊂ Dz and, for all x in Dz, there exists a sequence of positive numbers (tn) ⊂ R+ such

that tn → 0 as n→∞ and yn = z + tn(x− z) ∈ D(A) for n ≥ 1.

Take x ∈ Dz and for η > 0 define

O = {ζ∗ ∈ X∗ : 〈ζ∗ − z∗, x− z〉 < η},

which is open in X∗ for the weak* topology. By the continuity assumption on A applied

to seg[z, x] := {z + t(x − z) : t ∈ [0, 1]}, we deduce the existence of y∗n ∈ Ayn ∩ O
for all n sufficiently large. By assumption we have 〈y∗n, yn − z〉 ≥ 0. On the other hand,

x− z = 1
tn

(yn − z). Whence

〈z∗, x− z〉 = 〈z∗ − y∗n, x− z〉+ 〈y∗n, x− z〉

= 〈z∗ − y∗n, x− z〉+
1

tn
〈y∗n, yn − z〉

> −η.
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Since η is arbitrary we must have

(1) 〈z∗, x− z〉 ≥ 0 for all x ∈ Dz.

Since D(A) ⊂ Dz, from (1) we can conclude the desired inequality 〈z∗, x − z〉 ≥ 0 for all

x ∈ D(A). �

Remark 2. Lemma 1 extends Minty’s (see [19, 20, 2, 9, 11]) in various directions: First,

from reflexive Banach spaces to topological vector spaces; second, our extension holds for

set-valued lower-hemicontinuous mappings rather than single-valued mappings that are con-

tinuous on finite dimensional subspaces; and finally, we consider more general type of do-

mains, beyond the convex ones.

2. Single-valuedness

An important consequence of the preceding result is presented below and it concerns the

fact that under certain assumptions, the operator is always single-valued.

Given a nonempty set D ⊂ X, the normal cone of D at x ∈ D, denoted by ND(x), is the

set

ND(x) = {x∗ ∈ X∗ : 〈x∗, x− u〉 ≥ 0 for all u ∈ D}.

For x /∈ D the normal cone of D at x is the empty set. Observe that 0 ∈ ND(x) for every

x ∈ D. Moreover, if x ∈ int(D), then ND(x) = {0}. Finally, note that if D is a quasi-dense

set, then ND(x) = {0} for every x ∈ D.

The following result establishes single-valuedness whenever the normal cone is pointed1:

Theorem 3. Let X be a topological vector space and let A : X → 2X
∗

be a lower-

hemicontinuous monotone operator. Then, A is single-valued at every point z ∈ SA(D(A))

such that ND(A)(z) is pointed.

Proof. Let z ∈ SA(D(A)) and let z∗1 , z
∗
2 ∈ Az. The monotonicity of A implies

〈x∗ − z∗1 , x− z〉 ≥ 0

for each x ∈ D(A) and x∗ ∈ Ax. By applying Lemma 1 to the operator B : X → 2X
∗

defined by Bx = Ax− {z∗1}, we deduce that

〈z∗2 − z∗1 , x− z〉 ≥ 0

for each x ∈ D(A) and therefore, z∗1 − z∗2 ∈ ND(A)(z). With the same arguments, we can

prove that z∗2 − z∗1 ∈ ND(A)(z). If ND(A)(z) ∩
[
−ND(A)(z)

]
= {0}, then z∗1 = z∗2 . �

An immediate consequence is the following new result concerning single-valuedness of

operators defined on topological vector spaces in the interior of their domains:

Corollary 4. Let X be a topological vector space and let A : X → 2X
∗

be a monotone and

lower-hemicontinuous operator. Then A is a single-valued mapping on int(D(A)).

1A cone K is pointed if K ∩ [−K] = {0}.
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Remark 5. Corollary 4 is an extension of [13, Corollary 2.2] from Hilbert to topological

vector spaces. In addition, our result is formulated under a weaker continuity assump-

tion over more general type of domain and using only monotonicity property (not strong

monotonicity). Also, it represents a X-to-X∗ counterpart of [13, Theorem 2.1].

As in Corollary 4, we obtain an even more general result for quasi-dense domains. Notice

that these sets are SA and the normal cone is reduced to {0} at every point.

Corollary 6. Let X be a topological vector space and let A : X → 2X
∗

be a monotone and

lower-hemicontinuous operator with quasi-dense domain D(A). Then, A is a single-valued

mapping.

Remark 7. In [30], [17], and [16], it is studied the set of points where a monotone oper-

ator is not single-valued, proving that this set has empty interior (when X is a separable

Banach space) and has Lebesgue measure zero (when X is fine-dimensional). The above

corollaries extend the mentioned results for more general spaces, under lower-hemicontinuity

assumption for the operator.

3. Sufficient conditions for maximality

A monotone operator A : X → 2X
∗

is said to be maximal if its graph is not properly

contained in the graph of any other monotone operator. In other words, whenever the

condition

〈x∗ − z∗, x− z〉 ≥ 0 for all x ∈ D(A) and x∗ ∈ Ax,

implies z ∈ D(A) and z∗ ∈ Az. A typical example of a maximal monotone operator is the

subdifferential of a continuous convex function everywhere defined on a topological vector

space [21, Theorem 2].

More generally, a monotone operator A is D-maximal (see Browder [7]) if the condition

(z, z∗) ∈ D(A)×X∗ and 〈x∗ − z∗, x− z〉 ≥ 0 for all x∗ ∈ Ax with x ∈ D(A),

implies z∗ ∈ Az.

Proposition 8. Let X be a topological vector space and let A : X → 2X
∗

be a monotone and

lower-hemicontinuous operator with quasi dense-domain D(A). Then A is a single-valued

D-maximal operator.

Proof. Observe that by Corollary 6, the operator A must be single-valued. Now, let z ∈
D(A) and z∗ ∈ X∗ such that

〈Ax− z∗, x− z〉 ≥ 0

for all x ∈ D(A). We shall prove that z∗ = Az. Indeed, as in the proof of Theorem 3,

Lemma 1 implies

〈Az − z∗, x− z〉 ≥ 0

for all x ∈ D(A). Once again, the quasi density of D(A) allow us to conlcude Az = z∗. �

In particular, we have the following result.
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Corollary 9. Let X be a topological vector space and let A : X → 2X
∗

be monotone and

lower-hemicontinuous with D(A) = X. Then A is maximal monotone.

Remark 10. Corollary 9 extends [12, Corollary 2.7 of Chapter V], and [3, Proposition 1].

The two cited results assume that the operator is single-valued, which we happen to prove

of being unnecessary. Moreover, the first result is proved for Banach spaces.

4. Local boundedness, D-maximality and continuity

Recall that an operator A is locally bounded at x0 if there exists a neighborhood U of x0

such that the set

A(U) = ∪{A(x) : x ∈ U}

is a relatively weak*-compact set of X∗.

As a consequence of some previous results, we obtain the following:

Theorem 11. Let X be a locally convex Hausdorff space and let A : X → 2X
∗

be a

monotone and lower-hemicontinuous operator with a quasi-dense domain D(A). If A is

locally bounded, then A is a single-valued demicontinuous D-maximal monotone operator.

Proof. First of all, due to Corollary 6 and Proposition 8, we derive that A is a single-

valued D-maximal monotone operator. Then by Theorem 1 of [18], we conclude that A is

demicontinuous on D(A). �

As a consequence of Theorem 11, we derive a result for Fréchet spaces, but first, we need

the following proposition.

Proposition 12. Let X be a Fréchet space and let A : X → X∗ be a hemicontinuous

monotone operator with quasi-dense domain D(A). Then A is locally bounded.

Proof. The proof is essentialy included in the proof of the theorem of [14]. �

Corollary 13. Let X be a Fréchet space and let A : X → 2X
∗

be monotone and lower-

hemicontinuous operator with a quasi-dense domain en A is D-maximal and demicontinuous

on D(A).

Proof. From Corollary 6, A is single-valued on D(A). Since X is a Fréchet space, A is locally

bounded (from Proposition 12). Consequently, by Theorem 11, A is demicontinuous and

D-maximal on D(A). �

Remark 14. Theorem 11, and especially Corollary 13, extend Theorem 1 of Kato [15] from

Banach spaces to locally convex spaces and Fréchet spaces respectively.

In this section, we present several results that relates D-maximal monotonicity with

continuity properties on the operator. Particularly, at the end of the section, we address the

question under what assumptions, monotone operators are demicontinuous single-valued.

Theorem 15. Let X be a locally convex Hausdorff space and D ⊂ X a nonempty set.

Let A : X → 2X
∗

be a D-maximal monotone operator, which is locally bounded on finite

dimensional subspaces. Then A is upper-hemicontinuous on D.
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Proof. Let x0 ∈ D(A). Suppose A is not upper-hemicontinuous at x0. This means, for some

z ∈ D(A), there exists a weak* open subset W ⊂ X∗, with Ax0 ⊂ W , such that for each

neighborhood U of x0 relative to the segment seg[z, x0], there exist x ∈ U and x∗ ∈ Ax

with x∗ /∈W .

First, since A is locally bounded on finite dimensional subspaces, there exists a neigh-

borhood V of x0 relative to seg[z, x0] such that A(V ) is a relatively weak*-compact set of

X∗.

Second, since the segment seg[z, x0] is contained in a finite dimensional subspace, and

there is only one topology compatible with the structure of locally convex topological Haus-

dorff space, we may take a sequence of neighborhoods (Vn) ⊂ V of x0 relative to seg[z, x0],

such that for any sequence (zn) ⊂ V with zn ∈ Vn, one has zn → x0. Therefore, in view

of the first paragraph, we can select a sequence (xn) ⊂ V with xn ∈ Vn, for which there

exists x∗n ∈ Axn ⊂ A(V ) such that x∗n /∈ W for each n ∈ N. Clearly, from the choice of

neighborhoods Vn, xn → x0.

From the weak* relative compactness of A(V ), we can obtain a subnet (x∗i ) of (x∗n)

convergent, in the weak* topology, to some x∗0 /∈ W and a subnet (xi) of (xn), with x∗i ∈
Axi. Since xn → x0, we also have xi → x0. Then, the monotonicity of A implies that

〈x∗i − x∗, xi − x〉 ≥ 0 for all x∗ ∈ Ax and all x ∈ D(A).

We conclude

〈x∗0 − x∗, x0 − x〉 ≥ 0 for all x∗ ∈ Ax and for all x ∈ D(A).

Therefore, the D-maximal monotonicity of A implies that x∗0 ∈ Ax0, which contradicts the

fact that x∗0 /∈W . Consequently, A is upper-hemicontinuous on D(A). �

For the single-valued case, we obtain this interesting fact, that appears to be new, and is

a direct consequence of Theorem 15.

Corollary 16. Let D be a subset of a locally convex space X and let A : D → X∗ be a

D-maximal monotone operator, which is locally bounded on finite dimensional subspaces.

Then A is hemicontinuous on D.

The following is a consequence of a Rockafellar [27] and Kravvaritis [18] results.

Theorem 17. Let X be a locally convex (real) Hausdorff space and let A : X → 2X
∗

be a D-

maximal monotone operator. Suppose that A is locally bounded at some x ∈ G := int(D(A)).

Then A is upper-demicontinous and locally bounded on G ∩ D(A).

Proof. By [27, Corollary 2.2], we obtain that A is locally bounded on all of G. Since A is

D-maximal, it is also (G∩D(A))-maximal. Hence, by [18, Theorem 1], we conclude that A

is upper demicontinuous on G ∩ D(A). �

Remark 18. We notice that Theorem 17 extends Theorem 2 of [17] for Banach spaces to

locally convex Hausdorff spaces.

A direct consequence of Theorem 17 is the following corollary.
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Corollary 19. Let X be a locally convex Hausdorff space and let A : X → 2X
∗

be a lower-

hemicontinuous and D-maximal monotone operator. Suppose that A is locally bounded at

some x ∈ int(D(A)). Then A is single-valued and demicontinuous on int(D(A)).

Proof. Due to Corollary 4, A is single-valued on int(D(A)), and consequently, by Theorem

17, A is demicontinuous on int(D(A)). �

We complete this section by replacing the quasi-density of D(A) by being open and obtain

an extension to arbitrary locally convex spaces of the Theorem in [14].

Corollary 20. Let X be a locally convex Hausdorff space and let A : X → 2X
∗

be monotone

and lower-hemicontinuous operator with open domain D(A). Suppose A is locally bounded

at some x ∈ D(A). Then A is a demicontinuous D-maximal monotone operator, which is

locally bounded on D(A).

Proof. First of all, due to Proposition 8, we derive that A is aD-maximal monotone operator.

Then as a consequence of Theorem 17 combined with Corollary 19, we obtain that A is

demicontinuous on D(A). The locally boundedness on D(A) follows from [27, Corollary

2.2]. �

Kato [15] proved that, for single valued monotone operators, hemicontinuity implies demi-

continuity whenever D(A) is a quasi dense subset of a Banach space and A is locally bounded

at each point of D(A). So, Corollary 20 extends this result for locally convex Hausdorff

spaces, showing that the singled-valuedness is a consequence of the hypothesis.

5. Closedness

An operator A : X → 2X
∗
, defined on a normed space X, is said to be demiclosed if for

each pair of sequences (zn) in X, converging weakly to z ∈ X, and (z∗n) in X∗, converging

in the norm topology to z∗ ∈ X∗, with z∗n ∈ Azn, one has z∗ ∈ Az.
The following propositions are extensions of well-known results for maximal monotone

operators in Hilbert spaces to more general spaces. The proofs are essentially the same (see

propositions 1.6 y 1.7 in [24]).

Proposition 21. Let X be a normed space and let A : X → 2X
∗

be a maximal monotone

operator. Then A is demiclosed.

Proof. Let (zn) be a sequence in X that converges weakly to z while (z∗n) is any sequence

in X∗ that converges strongly to z∗ with z∗n ∈ Azn. Then, by monotonicity, we have

〈x∗ − z∗n, x− zn〉 ≥ 0 for all x∗ ∈ Ax

and all x ∈ D(A). Passing to the limit we obtain

〈x∗ − z∗, x− z〉 ≥ 0, for all u∗ ∈ Ax and all x ∈ D(A).

The maximality of A gives z ∈ D(A) and z∗ ∈ Az, which completes the proof. �
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Remark 22. In the previous proof observe that if X is a Banach space, (zn) converges

strongly to z, and (z∗n) (with z∗n ∈ Azn) converges in the weak* topology to z∗, then we also

obtain that z∗ ∈ Az.

Proposition 23. Let X be a topological vector space and let A : X → 2X
∗

be a D-maximal

monotone operator. Then, for each x ∈ D(A), Ax is a w∗-closed convex subset of X∗

Proof. We first show that Ax is convex for an arbitrary x ∈ D(A). Let x∗1, x
∗
2 ∈ Ax. Then,

we know that

〈x∗1 − z∗, x− z〉 ≥ 0 and 〈x∗2 − z∗, x− z〉 ≥ 0 for z ∈ D(A) and z∗ ∈ Az.

Let x∗t = tx∗1 + (1− t)x∗2 for t ∈ [0, 1]. Then

〈x∗t − z∗, x− z〉 = t〈x∗1 − z∗, x− z〉+ (1− t)〈x∗2 − z∗, x− z〉 ≥ 0.

Hence 〈x∗t − z∗, x − z〉 ≥ 0 for all z ∈ D(A) and z∗ ∈ Az, and since A is D-maximal

monotone, we conclude that x∗t ∈ Ax. To see that Ax is w∗-closed, let {x∗α} be a net in Ax

such that x∗α → x∗. Let z ∈ D(A) and z∗ ∈ Az. Then

〈x∗ − z∗, x− z〉 = 〈x∗ − x∗α, x− z〉+ 〈x∗α − z∗, x− z〉

≥ 〈x∗ − x∗α, x− z〉.

Since x∗α → x∗, we can deduce 〈x∗ − z∗, x− z〉 ≥ 0. Hence x∗ ∈ Ax due to the D-maximal

monotonicity of A. �
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91, 1973.

[15] T. Kato. Demicontinuity, hemicontinuity and monotonicity. Bull. Amer. Math. Soc., 70:548–550, 1964.

[16] P. S. Kenderov. The set-valued monotone mappings are almost everywhere single-valued. C. R. Acad.

Bulgare Sci., 27:1173–1175, 1974.

[17] P. S. Kenderov. A note on multivalued monotone mappings. C. R. Acad. Bulgare Sci., 28(5):583–584,

1975.

[18] D. Kravvaritis. Continuity properties of monotone nonlinear operators in locally convex spaces. Proc.

Amer. Math. Soc., 72(1):46–48, 1978.

[19] G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.

[20] G. J. Minty. On a “monotonicity” method for the solution of non-linear equations in Banach spaces.

Proc. Nat. Acad. Sci. U.S.A., 50:1038–1041, 1963.

[21] G. J. Minty. On the monotonicity of the gradient of a convex function. Pacific J. Math., 14:243–247,

1964.

[22] G. J. Minty. On the solvability of nonlinear functional equations of ‘monotonic’ type. Pacific J. Math.,

14:249–255, 1964.

[23] L. Nirenberg. Topics in nonlinear functional analysis, volume 6 of Courant Lecture Notes in Mathe-

matics. New York University Courant Institute of Mathematical Sciences, New York, 2001. Chapter 6

by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original.

[24] J. Peypouquet and S. Sorin. Evolution equations for maximal monotone operators: asymptotic analysis

in continuous and discrete time. J. Convex Anal., 17(3-4):1113–1163, 2010.

[25] R. R. Phelps. Convex functions, monotone operators and differentiability, volume 1364 of Lecture Notes

in Mathematics. Springer-Verlag, Berlin, 1989.

[26] A. Pietsch. Nuclear locally convex spaces. Springer-Verlag, New York, 1972. Translated from the second

German edition by William H. Ruckle, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66.

[27] R. T. Rockafellar. Local boundedness of nonlinear, monotone operators. Michigan Math. J., 16:397–407,

1969.

[28] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optimiza-

tion, 14(5):877–898, 1976.

[29] R. E. Showalter. Continuity of maximal monotone sets in Banach space. Proc. Amer. Math. Soc.,

42:543–546, 1973.

[30] E. H. Zarantonello. Dense single-valuedness of monotone operators. Israel J. Math., 15:158–166, 1973.
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