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Abstract. We study a forward backward splitting algorithm that solves the variational inequality

Ax+∇Φ(x) +NC(x) ∋ 0

where H is a real Hilbert space, A : H ⇒ H is a maximal monotone operator, Φ : H → R is a
smooth convex function, and NC is the outward normal cone to a closed convex set C ⊂ H. The
constraint set C is represented as the intersection of the sets of minima of two convex penalization
function Ψ1 : H → R and Ψ2 : H → R ∪ {+∞}. The function Ψ1 is smooth, the function Ψ2 is
proper and lower semicontinuous. Given a sequence (βn) of penalization parameters which tends
to infinity, and a sequence of positive time steps (λn), the algorithm

(SFBP )

{
x1 ∈ H,

xn+1 = (I + λnA+ λnβn∂Ψ2)
−1(xn − λn∇Φ(xn)− λnβn∇Ψ1(xn)), n ≥ 1,

performs forward steps on the smooth parts and backward steps on the other parts. Under suitable
assumptions, we obtain weak ergodic convergence of the sequence (xn) to a solution of the variational
inequality. Convergence is strong when either A is strongly monotone or Φ is strongly convex. We
also obtain weak convergence of the whole sequence (xn) when A is the subdifferential of a proper
lower semicontinuous convex function. This provides a unified setting for several classical and more
recent results, in the line of historical research on continuous and discrete gradient-like systems.

Key words: constrained convex optimization; forward-backward algorithms; hierarchical optimiza-
tion; maximal monotone operators; penalization methods; variational inequalities.
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1. Introduction

In 1974, R. Bruck [16] showed that the trajectories of the steepest descent system

ẋ(t) + ∂Φ(x(t)) ∋ 0

minimize the convex, proper, lower semicontinuous potential Φ defined on a real Hilbert space H.
They weakly converge to a point in the minima of Φ and the potential decreases along the trajectory
toward its minimal value, provided Φ attains its minimum. When the semigroup is generated by
the differential inclusion

ẋ(t) +A(x(t)) ∋ 0

with a maximal monotone operator A from H to H, J.-B. Baillon and H. Brézis [8] provided in
1976 the convergence in average to an equilibrium of A. These results are sharp. If the operator
is a rotation in R2, the trajectories do not converge, except the stationary one. J.-B. Baillon [6],
provided an example in 1978, where the trajectories of the steepest descent system do not strongly
converge, although they weakly converge. In some sense, his example is an extension to a Hilbert
space of the rotation in R2. The keytool for the proof of these two results is Opial’s lemma [32]
that gives weak convergence without a priori knowledge of the limit. In 1996, H. Attouch and R.
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Cominetti [2] coupled approximation methods with the steepest descent system, in particular by
adding a Tikhonov regularizing term:

ẋ(t) + ∂Ψ(x(t)) + ε(t)x(t) ∋ 0.

The parameter ε tends to zero and the potential Ψ satisfies usual assumptions. As it yields the
steepest descent system for ε = 0, one can expect the trajectories to weakly converge. The striking
point of their results is the strong convergence of the trajectories, when ε tends to 0 slowly enough,
that is ε does not belong to L1. Then the strong limit is the point of minimal norm among
the minima of Ψ. This seems rather surprising at first: without a regularizing term ε(t)x(t), we
know that we only have weak convergence, and with the regularizing term, convergence is strong.
We propose the following explanation: set Φ(x) = 1

2∥x∥
2 so that the regularizing term writes

ε(t)x(t) = ε(t)∇Φ(x(t)). Then, by a change of time, valid for ε /∈ L1, see [3], we can reformulate
the system as a penalized system

ẋ(t) +∇Φ(x(t)) + β(t)∂Ψ(x(t)) ∋ 0,

with a parameter β that tends to infinity. But now we are looking at a steepest descent system
for the strongly convex function Φ with a penalization potential Ψ, possibly equal to 0. And it is
known that the trajectories of the steepest descent system strongly converge when the potential is
strongly convex. In 2004, A. Cabot [19] generalized part of Attouch and Cominetti’s result to the
case of a strongly convex potential. The penalization acts as a constraint and forces the limit to
belong to the minima of Ψ. It appeared natural to add a penalization, rather than a perturbation
or a regularization, to the first order differential inclusion with a maximal monotone operator,
and to the steepest descent system with a −not necessarily strongly− convex potential. Moreover,
penalization methods enjoy great practical interest in terms of its implementation; especially when
others, such as projection methods, encounter intrinsic difficulties. A typical example is when the
constraint set is given by nonlinear inequalities. H. Attouch and M.-O. Czarnecki [3] showed in
2010 that the trajectories of

ẋ(t) +A(x(t)) + β(t)∂Ψ(x(t)) ∋ 0

weakly converge in average to a constrained equilibrium

x∞ ∈ (A+NC)
−1(0),

where C = ArgminΨ. Moreover, convergence is strong when A is strongly monotone, and in the
subdifferential case, the trajectories of

ẋ(t) + ∂Φ(x(t)) + β(t)∂Ψ(x(t)) ∋ 0,

weakly converge to a constrained minimum

x∞ ∈ argmin{Φ|argminΨ}.

Besides assuming the parameter β to tend to +∞, their main assumption relates the geometry of
the penalization potential Ψ to the growth rate of the penalization parameter β, namely∫ +∞

0
β(t)

[
Ψ∗

(
p

β(t)

)
− σC

(
p

β(t)

)]
dt < +∞

for every p in the range of NC , the normal cone to C = argminΨ. Here Ψ∗ denotes the Fenchel
conjugate of Ψ and σC the support function of C. A detailed analysis of the condition is done
in [3]. Let us just mention that, when Ψ = 1

2dist
2
C , it reduces to

∫ +∞
0

1
β(t)dt < +∞. When Ψ = 0,

then C = H and the only p in the normal cone is 0, and the condition is fulfilled. So one recovers
the results of Bruck and of Baillon and Brézis.
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Discretization. In order to compute the trajectories of the system, and obtain workable algo-
rithms, we need to discretize it. The implicit discretization of unpenalized first order system is the
famous proximal algorithm, well studied from the mid seventies (B. Martinet [26] and [27], R.T.
Rockafellar [38], H. Brézis and P.L. Lions. [15], among others):

xn+1 = (I + λnA)
−1xn.

Following the same path, in 2011, Attouch, Czarnecki and Peypouquet [4] discretized the penalized
continuous system implicitly to obtain the backward algorithm:

xn+1 = (I + λnA+ λnβn∂Ψ)−1xn.

They provide weak convergence in average to a constrained equilibrium x∞ ∈ (A+NC)
−1(0), strong

convergence when A is strongly monotone, and weak convergence in the subdifferential case. A
basic assumption on the time step is (λn) /∈ l1, which corresponds to t → +∞ in continuous time.
The key assumption is the discrete counterpart of the assumption in continuous time:

∞∑
n=1

λnβn

[
Ψ∗

(
z

βn

)
− σC

(
z

βn

)]
< ∞

for every p in the range of NC . Again, in the case where Ψ = 0, one recovers classical results for the
proximal algorithm. The main drawback of the backward algorithm is the cost of every step in the
computation of the discrete trajectory. The explicit discretization of the steepest descent system
can be traced back to A. Cauchy [21] in 1847, who gave indeed the idea of the discrete gradient
method

xn+1 = xn − λn∇Φ(xn),

with no proof of convergence, and before the continuous steepest descent system. J. Peypouquet [35]
discretized the continuous penalized system explicitly in 2012 to obtain a forward algorithm, in a
regular setting

xn+1 = xn − λn∇Φ(xn)− λnβn∇Ψ(xn).

He shows weak convergence of the trajectories to a constrained minimum

x∞ ∈ argmin{Φ|argminΨ}

provided the gradient of the potential Φ is Lipschitz continuous. Together with the key assumption
described before relating the Fenchel conjugate of Ψ and the sequences (λn) and (βn), he requires
an assumption combining a bound on these sequences and the Lipschitz constant of ∇Ψ. It slightly
differs, and is a consequence of

lim sup
n→∞

λnβn <
2

L∇Ψ
.

To make things short, forward algorithms are more performing, but require more regularity as-
sumptions and convergence is more complicated to prove, while backward algorithms apply to
more general cases, convergence is easier to prove but they are not so efficient. As the constraint
set can possibly be described by a regular penalization function, the next idea, developed in [5], is
to perform a forward step on the regular part Ψ, and a backward step on the other part to obtain
the forward-backward algorithm:

xn+1 = (I + λnA)
−1(xn − λnβn∇Ψ(xn)).

We obtain again weak convergence in average to a constrained equilibrium x∞ ∈ (A + NC)
−1(0),

strong convergence when A is strongly monotone, and weak convergence in the subdifferential case.
Together with the key summability assumption relating Ψ and the parameters (λn) and (βn), we
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assume that the function Ψ is differentiable with a Lipschitz gradient. We need the same assumption
on (λn), (βn), and the Lipschitz constant of ∇Ψ:

lim sup
n→∞

λnβn <
2

L∇Ψ
.

The bound is strict in general, and is close to being sharp: equality, with a precise potential Ψ,
corresponds to a result of Passty [33] on alternate algorithms. A detailed analysis is given in [5].

Regularity based splitting. We now have three different algorithms depending on the regularity
of the data: backward algorithms, forward algorithms, forward-backward algorithms. Convergence
holds under the same summability assumption involving the Fenchel conjugate of Ψ, and similar
regularity assumptions to perform a forward step.

What if the maximal monotone operator has a regular part, and if the penalization potential
decomposes with a regular part? Can we guarantee convergence if we perform forward steps on
the regular parts, while keeping the backward step on the other parts? Can we provide a unified
setting for the previous algorithms?

Let A be a maximal monotone operator, let Φ, Ψ1, Ψ2 be convex proper lower semicontinuous
potentials. The functions Φ and Ψ2 are defined everywhere and differentiable with a Lipschitz gra-
dient. Set C = ArgminΨ1∩ArgminΨ2, which corresponds to the decomposition of the penalization
function as the sum of a smooth part and a general part, and assume that C is not empty. The
penalized system

(1) ẋ(t) + (A+∇Φ)(x(t)) + β(t)(∂Ψ1 +∇Ψ2)(x(t)) ∋ 0

allows to solve the variational inequality

(2) 0 ∈ Ax+∇Φ(x) +NC(x).

We discretize this last continuous penalized system by making a forward step on the regular parts
Φ and Ψ2, and a backward step on A and Ψ1. Given a positive sequence (βn) of penalization
parameters, along with a positive sequence (λn) of step sizes, we consider the splitting forward-
backward penalty algorithm (SFBP), defined as follows:

(SFBP )

{
x1 ∈ H,

xn+1 = (I + λnA+ λnβn∂Ψ2)
−1(xn − λn∇Φ(xn)− λnβn∇Ψ1(xn)), n ≥ 1.

Under suitable assumptions, including the expected geometrical condition involving the Fenchel
conjugate of the penalization potential and the expected relationship between the parameters and
the Lipschitz constant of ∇Ψ1, we prove that, as n → ∞, the sequences generated by the (SFBP)
algorithm converge to a constrained equilibrium in S = (A+∇Φ+NC)

−10

i) weakly in average if A is any maximal monotone operator (Theorem 1);
ii) strongly if A is strongly monotone, or if Φ is strongly convex (Theorem 2);
iii) weakly if A is the subdifferential of a proper, lower semicontinuous and convex function

(Theorem 3).

Besides its applicability to problems that combine smooth and nonsmooth features, the (SFBP)
algorithm allows us to study, in a unified framework, the classical and more recent methods to solve
constrained variational inequalities.

If Φ = Ψ1 = Ψ2 ≡ 0, we recover the proximal point algorithm . If Φ = Ψ1 ≡ 0, the (SFBP)
algorithm corresponds to the purely implicit prox-penalization algorithm from [4]. The gradient
method, is recovered in the case where A ≡ 0 and Ψ1 = Ψ2 ≡ 0. If A ≡ 0 and Ψ2 ≡ 0, we obtain
the purely explicit diagonal gradient scheme from [35]. We get the forward-backward splitting (a
combination of the proximal point algorithm and of the gradient method, see [33]) if Ψ1 = Ψ2 ≡ 0.
The case Φ = Ψ2 ≡ 0 gives a semi-implicit penalty splitting method studied in [5] and [31].
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Organization of the paper. The paper is organized as follows: We begin by describing and
commenting the hypotheses, and stating the main theoretical results, in Section 2. Next, in Sec-
tion 3, we present several special cases, and compare them with classical and more recent methods
to solve constrained optimization problems. In particular, this work extends and unifies some pre-
vious developments progressively achieved by our work group, namely [4, 5, 31, 35]. In Section 4,
we describe a model for the sparse-optimal control of a linear system of ODE’s. It illustrates how
the decomposition of objective potential and penalization naturally arises. Finally, we present the
proofs in several steps in Section 5.

2. Main results

Let H be a real Hilbert space. We first recall some facts about convex analysis and maximal
monotone operator theory. The notation is relatively standard (see, for instance, [29, 37, 11,
34]). Following Moreau [29], let Γ0(H) be the set of all proper (not identically equal to +∞)
lower semicontinuous convex functions from H to R ∪ {+∞}. Given F ∈ Γ0(H) and x ∈ H, the
subdifferential of F at x is the set

∂F (x) = {x∗ ∈ H : F (y) ≥ F (x) + ⟨x∗, y − x⟩ for all y ∈ H}.
Given a nonempty closed convex set C ⊂ H, its indicator function is defined as δC(x) = 0 if

x ∈ C and +∞ otherwise. The normal cone to C at x is

NC(x) = {x∗ ∈ H : ⟨x∗, c− x⟩ ≤ 0 for all c ∈ C}
if x ∈ C and ∅ otherwise. Observe that ∂δC = NC . A monotone operator is a set-valued mapping
A : H → H such that ⟨x∗ − y∗, x− y⟩ ≥ 0 whenever x∗ ∈ Ax and y∗ ∈ Ay. It is maximal monotone
if its graph is not properly contained in the graph of any other monotone operator. It is convenient
to identify a maximal monotone operator A with its graph, thus we equivalently write x∗ ∈ Ax
or [x, x∗] ∈ A. The inverse A−1 : H → H of A is defined by x ∈ A−1x∗ ⇔ x∗ ∈ Ax. It is still a
maximal monotone operator. For any maximal monotone operator A : H → H and for any λ > 0,
the operator I + λA is surjective by Minty’s Theorem (see [14] or [36]). The operator (I + λA)−1

is nonexpansive and everywhere defined. It is called the resolvent of A of index λ. Finally recall
that the subdifferential of a function in Γ0(H) is maximal monotone.

2.1. Assumptions. Let A be a maximal monotone operator, let Φ, Ψ1, Ψ2 be convex proper lower
semicontinuous potentials with

C = ArgminΨ1 ∩ ArgminΨ2 ̸= ∅.
The functions Φ and Ψ2 are defined everywhere and differentiable with a Lipschitz gradient. The
Fenchel conjugate of F ∈ Γ0(H) is the function F ∗ ∈ Γ0(H) defined by

F ∗(x∗) = sup
y∈H

{⟨y, x∗⟩ − F (y)}

for each x∗ ∈ H. It is also proper, lower semicontinuous and convex. Given a nonempty, closed
and convex set C, its support function σC is defined as σC(x

∗) = sup
c∈C

⟨x∗, c⟩ for x∗ ∈ H. Observe

that δ∗C = σC . Notice also that x∗ ∈ NC(x) if, and only if, σC(x
∗) = ⟨x∗, x⟩.

The main set of hypotheses is the following:

(H0)



i) T = A+∇Φ+NC is maximal monotone and S = T−1(0) ̸= ∅;
ii) ∇Φ is LΦ-Lipschitz continuous and ∇Ψ1 is LΨ1-Lipschitz continuous;

iii) For each z ∈ NC(H),
∞∑
n=1

λnβn

[
(Ψ1 +Ψ2)

∗
(

z

βn

)
− σC

(
z

βn

)]
< ∞;

iv)
∞∑
n=1

λn = +∞,
∞∑
n=1

LΦλ
2
n < +∞, and lim sup

n→∞
(LΨ1λnβn) < 2.
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We adress some remarks on Hypothesis (H0) in order.

On Part i). It is a well-posedness and qualification condition ensuring that

(3) ū ∈ S if, and only if, ⟨w, u− ū⟩ ≥ 0 for all [u,w] ∈ T.

If A is the subdifferential of a proper, lower semicontinuous and convex function Φ2, the maximal
monotonicity of T implies

(4) S = Argmin{Φ(x) + Φ2(x) : x ∈ C}.

In this situation, S can be interpreted as the set of solutions of a hierarchical optimization problem,
where Φ+Φ2 and Ψ1+Ψ2 are primary and secondary criteria, respectively. In this case, maximality
of T holds under some qualification condition, such as Moreau-Rockafellar or Attouch-Brézis.

On Part ii). It is standard for the convergence of gradient-related methods (see [12]).

On Part iii). It was introduced in [4], following [3]. The potentials Ψ1 and Ψ2 enter the algo-
rithm only via their subdifferentials. Thus it is not a restriction to assume minΨ1 = minΨ2 = 0.
Otherwise, one should replace Ψi by Ψi −minΨi in the corresponding statements. In the uncon-
strained case (Ψ1 = Ψ2 ≡ 0), the condition is trivially satisfied since NC(H) = {0}, Ψ∗(0) = 0 and
σH(0) = 0. We refer to [4] for discussion and sufficient conditions. Note that the constraint set
C is the set of minima of the potential Ψ1 + Ψ2, which leads naturally to an assumption on the
Fenchel conjugate of the sum Ψ1+Ψ2, and involving points in the normal cone NC . In our setting,
considering alternatively the two separate corresponding conditions on Ψ∗

1 and Ψ∗
2 would require

extra qualification conditions.

On Part iv). The nonsummability condition in Part iv) is standard for the proximal point algorithm
(see [15]) and gradient-related methods (see [12]). The second condition holds if either Φ is affine
(that is LΦ = 0) or (λn) is in ℓ2. We write lim sup

n→∞
(LΨ1λnβn) < 2 rather than lim sup

n→∞
λnβn < 2

LΨ1

to include the case where LΨ1 = 0 (Ψ1 ≡ 0).

2.2. Convergence results. Take a sequence (xn) generated by the splitting forward-backward
penalty algorithm (SFBP):

(SFBP )

{
x1 ∈ H,

xn+1 = (I + λnA+ λnβn∂Ψ2)
−1(xn − λn∇Φ(xn)− λnβn∇Ψ1(xn)), n ≥ 1,

which corresponds to the implicit-explicit discretization

xn − xn+1

λn
−∇Φ(xn)− βn∇Ψ1(xn) ∈ Axn+1 + βn∂Ψ2(xn+1)

of the penalized differential inclusion (1). We do not discuss in detail the existence of trajectories.
Maximality of A + βn∂Ψ2 for all n ∈ N is sufficient in view of Minty’s theorem. Moreover, ac-
cording the discussion in Subsection 2.3, it is possible to consider the above inclusion replacing the
subdifferential operator by some enlargement, such as the ε-approximate subdifferential.

The kind of convergence depends on the nature of the operator A.

When A is any maximal monotone operator we prove the weak ergodic convergence of the
algorithm to a point in S. More precisely, let (xn) be a sequence generated by (SFBP) and let
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τn =
n∑

k=1

λk. We define the following sequences of weighted averages:

(5) zn =
1

τn

n∑
k=1

λkxk ẑn =
1

τn

n∑
k=1

λkxk+1.

Although quite similar, they converge under slightly different assumptions, as we shall see.

Theorem 1. Assume that (H0) holds. Then the sequence (ẑn) converges weakly to a point in S as
n → ∞. If we moreover assume that (λn) ∈ ℓ2 then the sequence (zn) converges weakly to a point
in S as n → ∞.

Under further assumptions, it is possible to obtain strong or weak convergence of the whole
sequence (xn). Recall that A is strongly monotone with parameter α > 0 if

⟨x∗ − y∗, x− y⟩ ≥ α∥x− y∥2

whenever x∗ ∈ Ax and y∗ ∈ Ay. The function Φ is strongly convex if ∇Φ is strongly monotone.
The set of zeros of a maximal monotone operator which is strongly monotone must contain exactly
one element. We have the following:

Theorem 2. Let (H0) hold. If the operator A is strongly monotone, or if the potential Φ is strongly
convex, then every sequence (xn) generated by algorithm (SFBP) converges strongly to the unique
u ∈ S as n → ∞.

Finally, a function F : H → R ∪ {+∞} is boundedly inf-compact if the sets of the form

{x ∈ H : ∥x∥ ≤ R, and F (x) ≤ M },

are relatively compact for every R ≥ 0 and M ∈ R.

We shall prove that if A is the subdifferential of a proper, lower semicontinuous and convex func-
tion Φ2, weak convergence of the sequences generated by the (SFBP) algorithm can be guaranteed
if either Φ2 is boundedly inf-compact, the penalization parameters satisfy a subexponential growth
condition, or in the unconstrained case. More precisely, we have the following:

Theorem 3. Let (H0) hold with A = ∂Φ2. Assume that any of the following conditions holds:

(i) lim inf
n→∞

λnβn > 0 and the function (Φ + Φ2) or (Ψ1 +Ψ2) is boundedly inf-compact;

(ii) lim inf
n→∞

λnβn > 0, (λn) is bounded and βn+1 − βn ≤ Kλn+1βn+1 for some K > 0; or

(iii) Ψ1 = Ψ2 = 0.

Then, the sequence (xn) converges weakly to a point in S as n → ∞. Moreover, convergence is
strong in case (i) if Ψ1 +Ψ2 is boundedly inf-compact.

The sequence (xn) minimizes Φ+ Φ2 in cases (ii) and (iii):

lim
n→∞

(Φ + Φ2)(xn) = min
C

(Φ + Φ2).

The proofs of Theorems 1, 2 and 3 will be completed in Sections 5.2, 5.3 and 5.4, respectively.
One cannot expect to have strong convergence in Theorem 3 in general, see the comment after
Corollary 6.
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2.3. Inexact computation of the iterates. Convergence also holds if the iterates are com-
puted inexactly provided the errors are small enough. More precisely, consider the inexact splitting
forward-backward penalty algorithm given by

(SFBPε)

 x1 ∈ H,
xn+1 = (I + λnA+ λnβn∂Ψ2)

−1(xn − λn∇Φ(xn)− λnβn∇Ψ1(xn)− ζn) + ξn,
n ≥ 1.

We recall the following result from [1]:

Lemma 4. Let (Pn) be a sequence of nonexpansive functions from H into H. Let (εn) be a positive
sequence in ℓ1. If every sequence (xn) satisfying

xn+1 = Pn(xn), n ≥ 1

converges weakly (resp. strongly, resp. weakly or strongly in average), then the same is true for
every sequence (x̃n) satisfying

∥x̃n+1 − Pn(x̃n)∥ ≤ εn, n ≥ 1.

Following the arguments in the proof of [4, Proposition 6.3], we obtain

Corollary 5. Let (ζn) and (ξn) be nonnegative sequences in ℓ1, and let (xn) satisfy (SFBPε). Then
Theorems 1, 2 and 3 remain true.

2.4. Forward Backward Backward algorithm and full splitting. The (SFBP) algorithm
is a step toward full splitting. It allows to understand the different roles played by the regular
parts −allowing for forward steps− and the general parts −needing backward steps. It requires to
compute the resolvent of the sum of two maximal monotone operators, which may be a hard task.
The full splitting of the backward step is achieved in [4]. Following the same path, let us define the
splitting forward-backward-backward penalty algorithm (SFBBP), as follows:
(SFBBP ){

x1 ∈ H,
xn+1 = (I + λnβn∂Ψ2)

−1(I + λnA)
−1(xn − λn∇Φ(xn)− λnβn∇Ψ1(xn)), n ≥ 1.

The complete study of (SFBBP) goes beyond the scope of this paper. We believe that the conver-
gence results should hold, by making use of the techniques in [4].

3. Comparison with classical and more recent methods

In this section we examine some particular cases, where some of the functions or the operator
involved in (2) vanish.

3.1. The backward algorithm. Taking the two potentials Φ and Ψ1 to be zero, the forward step
disappears and the (SFBP) algorithm turns into a purely backward algorithm.

3.1.1. The unconstrained case : the proximal point algorithm. If additionnally Ψ2 is zero, we obtain
the proximal point algorithm:

(PROX)

{
x1 ∈ H,

xn+1 = (I + λnA)
−1(xn) for all n ≥ 1.

This method was originally introduced in [26], using the idea of proximity operator from [28].
It was further developed in [38], [15] and [25]. Its popularity is due to the fact that, despite its
iteration-complexity, convergence can be granted under minimal hypotheses.

Let (xn) be a sequence generated by (PROX) and define (zn) and (ẑn) as in (5).

Corollary 6. Let S ̸= ∅ and (λn) /∈ ℓ1. As n → ∞, we have the following:
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i) The sequence (ẑn) converges weakly to a point in S;
ii) If (λn) ∈ ℓ2, then the sequence (zn) converges weakly to a point in S;
iii) If A is strongly monotone, then (xn) converges strongly to the unique point in S; and
iv) If A = ∂Φ2, then (xn) converges weakly to a point in S, with lim

n→∞
Φ2(xn) = min(Φ2).

Part i) is [36, Theorem 5.6], part ii) is [25, Theorem II.1.], part iii) is [15, Remark 11] and part
iv) is [15, Theorem 9].

A counterexample for strong convergence in case iv) was given in [24], following the ideas in [6].
Therefore, one cannot expect to obtain strong convergence in Theorem 3 in general.

3.1.2. Penalized algorithms: diagonal proximal algorithm. In general, we obtain the diagonal prox-
imal algorithm from [4]:

(DPA)

{
x1 ∈ H,
xn+1 = (I + λnA+ λnβn∂Ψ2)

−1(xn) for all n ≥ 1.

Hypothesis (H0) becomes

(H′
0)


i) T = A+NC is maximal monotone and S = T−1(0) ̸= ∅;

ii) For each z ∈ NC(H),
∞∑
n=1

λnβn

[
Ψ∗

2(
z

βn
)− σC(

z

βn
)

]
< ∞;

iii)
∞∑
n=1

λn = +∞.

Let (xn) be a sequence generated by (DPA) and define (zn) and (ẑn) as in (5).

Corollary 7. Let (H′
0) hold. As n → ∞, we have the following:

i) The sequence (ẑn) converges weakly to a point in S;
ii) If (λn) ∈ ℓ2, then the sequence (zn) converges weakly to a point in S; and
iii) If A is strongly monotone, then (xn) converges strongly to the unique point in S.

Part i) is [4, Theorem 3.3] and part iii) is [4, Theorem 3.4]. For the weak convergence, we have

Corollary 8. Let (H′
0) hold with A = ∂Φ2. Assume any of the following conditions holds:

(i) lim inf
n→∞

λnβn > 0 and either Φ2 or Ψ2 is boundedly inf-compact; or

(ii) lim inf
n→∞

λnβn > 0, (λn) is bounded and βn+1 − βn ≤ Kλn+1βn+1 for some K > 0.

Then, the sequence (xn) converges weakly to a point in S as n → ∞, with

lim
n→∞

Φ2(xn) = min
C

(Φ2).

Moreover, convergence is strong in case (i) if Ψ2 is boundedly inf-compact.

The hypotheses in part ii) are very close to, but slightly different from those corresponding to
cases ii) and iii) of [4, Theorem 3.6].

3.2. The forward algorithm. Taking the operator A and the potential Ψ2 to be zero, the back-
ward step disappears and the (SFBP) algorithm turns into a purely forward algorithm.

The gradient method. If additionnally Ψ1 = 0, we obtain the gradient method, which dates back
to [21]:

(GRAD)

{
x1 ∈ H,

xn+1 = xn − λn∇Φ(xn) for all n ≥ 1.

Let (xn) be a sequence generated by (GRAD).
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Corollary 9. Let Φ be a convex function with Lipschitz continuous gradient. Assume S ̸= ∅ and
(λn) ∈ ℓ2 \ ℓ1. As n → ∞, the sequence (xn) converges weakly to a point in S, with lim

n→∞
Φ(xn) =

min(Φ).

This is not the most general convergence result for the gradient method. The hypothesis (λn) ∈ ℓ2

may be replaced by lim supn→∞ λn < 2/LΦ (see [34, Proposition 6.19]). Intermediate results are
proved in [12, Paragraph 1.2.13], assuming the step sizes tend to zero; and in [18, Theorem 3],
under a very precise condition on the step sizes: δ1 ≤ λn ≤ 2

LΦ
(1 − δ2) with δ1, δ1 > 0 such that

LΦ
2 δ1 + δ2 < 1. The last two are proved in H = Rn, but the proof can be easily adapted to the
Hilbert-space framework.

3.2.1. Penalized algorithm: a diagonal gradient scheme. If A ≡ 0 we obtain the diagonal gradient
scheme studied in [35], namely:

(DGS)

{
x1 ∈ H,

xn+1 = xn − λn∇Φ(xn)− λnβn∇Ψ1(xn), n ≥ 1.

Hypothesis (H0) becomes

(H′′′
0 )



i) S = T−1(0) ̸= ∅;
ii) ∇Φ is LΦ-Lipschitz continuous and ∇Ψ1 is LΨ1-Lipschitz continuous;

iii) For each z ∈ NC(H),
∞∑
n=1

λnβn

[
Ψ∗

1(
z

βn
)− σC(

z

βn
)

]
< ∞;

iv)
∞∑
n=1

λn = +∞,
∞∑
n=1

λ2
n < +∞, and lim sup

n→∞
(LΨ1λnβn) < 2.

Then we have:

Corollary 10. Let (H′′′
0 ) hold, and assume that any of the following conditions holds:

(i) lim inf
n→∞

λnβn > 0 and the function Φ or Ψ1 is boundedly inf-compact; or

(ii) lim inf
n→∞

λnβn > 0, (λn) is bounded and βn+1 − βn ≤ Kλn+1βn+1 for some K > 0.

Then, the sequence (xn) converges weakly to a point in S as n → ∞, with

lim
n→∞

Φ(xn) = min
C

(Φ).

Moreover, convergence is strong in case (i) if Ψ1 is boundedly inf-compact.

Part ii) was given in [35, Theorem 2.1] with slightly different hypotheses.

3.3. The forward-backward splitting.

3.3.1. with no penalization. If A ̸≡ 0 and Φ ̸≡ 0 we obtain the forward-backward splitting:

(FB)

{
x1 ∈ H,

xn+1 = (I + λnA)
−1(xn − λn∇Φ(xn)) for all n ≥ 1.

This method combines the previous two, inheriting their virtues and drawbacks. A particularly
interesting case is the projected gradient method described as follows: Let C be a nonempty, closed
and convex subset of H and set A = NC . Then (FB) becomes

(PG)

{
x1 ∈ H,

xn+1 = ProjC(xn − λn∇Φ(xn)) for all n ≥ 1.

This is useful for minimization problems of the form

min{Φ(x) : x ∈ C},
when the projection onto the set C is easily performed.
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Let (xn) be a sequence generated by (FB).

Corollary 11. Let Φ be a convex function with Lipschitz continuous gradient. Assume S ̸= ∅ and
(λn) ∈ ℓ2 \ ℓ1. As n → ∞, we have the following:

i) The sequence (ẑn) converges weakly to a point in S;
ii) If (λn) ∈ ℓ2, then the sequence (zn) converges weakly to a point in S;
iii) If A is strongly monotone, then (xn) converges strongly to the unique point in S; and
iv) If A = ∂Φ2, then (xn) converges weakly to a point in S, with lim

n→∞
Φ2(xn) = min(Φ2).

The results in [17, Theorem 1] and [33, Theorem 2] are closely related to part ii). Although they
consider a maximal monotone operator B instead of ∇Φ (which is a more general framework), their
results rely on a ℓ2-summability condition − that is difficult to check in practice − concerning a
sequence (wn) satisfying wn ∈ λnB(xn). Analogously, [33, Corollary 1] is close to part iv).

If the step sizes are bounded from below by a positive constant, then the sequence (xn) converges
weakly, even when A is a maximal monotone operator and ∇Φ is replaced by a cocoercive function
B (see [22, Corollary 6.5]). A function B : H → H is cocoercive if ⟨Bx−By, x−y⟩ ≥ β∥Bx−By∥2
for all x, y ∈ H.

Smooth penalization. If Φ ≡ 0, we obtain the forward-backward-penalty scheme studied in [5] and
[31]:

(FBP )

{
x1 ∈ H,

xn+1 = (I + λnA)
−1(xn − λnβn∇Ψ1(xn)), n ≥ 1.

Hypothesis (H0) becomes

(H′′
0)



i) T = A+NC is maximal monotone and S = T−1(0) ̸= ∅;
ii) ∇Ψ1 is LΨ1-Lipschitz continuous;

iii) For each z ∈ NC(H),
∞∑
n=1

λnβn

[
Ψ∗

1(
z

βn
)− σC(

z

βn
)

]
< ∞;

iv)
∞∑
n=1

λn = +∞, and lim sup
n→∞

(LΨ1λnβn) < 2.

Corollary 12. Assume that (H′′
0) holds. As n → ∞, we have the following:

i) The sequence (ẑn) converges weakly to a point in S;
ii) If (λn) ∈ ℓ2, then the sequence (zn) converges weakly to a point in S;
iii) If A is strongly monotone, then (xn) converges strongly to the unique point in S.

Parts ii) and iii) yield [5, Theorem 12]. Observe that, in part i), convergence is proved without
the ℓ2-summability assumption, unlike in [5]. For the weak convergence we have the following:

Corollary 13. Let (H′′
0) hold with A = ∂Φ2. Assume that any of the following conditions holds:

(i) lim inf
n→∞

λnβn > 0 and the function Φ2 or Ψ1 is boundedly inf-compact; or

(ii) lim inf
n→∞

λnβn > 0, (λn) is bounded and βn+1 − βn ≤ Kλn+1βn+1 for some K > 0.

Then, the sequence (xn) converges weakly to a point in S as n → ∞, with

lim
n→∞

Φ2(xn) = min
C

(Φ2).

Moreover, convergence is strong in case (i) if Ψ1 is boundedly inf-compact.

Part i) yields [5, Theorem 16], Part ii) yields [31, Theorem 1]. Both cited results additionally
assume the ℓ2-summability of the step sizes.
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Remark 14. The main results of this paper appeared in the PhD thesis of Nahla Noun [30]. Si-
multaneously, Boţ and Csetnek [13] extended the forward-backward results of [5] in order to solve
the variational inequality

0 ∈ Ax+Dx+NC(x),

where A is a maximal monotone operator, D a cocoercive operator, and C is the set of zeroes of
another maximal monotone operator. Their framework is related but different from ours and cannot
be immediately compared.

4. An illustration: Sparse-optimal control of a linear system of ODE’s

Given y0 ∈ Rn, A : [0, T ] → Rn×n, B : [0, T ] → Rn×m, and c : [0, T ] → Rn, consider the control
system

(CS)
{

ẏ(t) = A(t)y(t) +B(t)u(t) + c(t), t ∈ (0, T )
y(0) = y0.

We assume that the functions A, B and c are bounded and sufficiently regular so that, for each
u ∈ L∞(0, T ;Rm), the system (CS) has a unique solution yu : [0, T ] → Rn, which is an absolutely
continuous function such that yu(0) = y0 and the differential equation holds almost everywhere.

We are interested in the optimal control problem

(OCP) min

{
1

2
∥yu − ȳ∥2L2(0,T ;Rn) + ∥u∥2L2(0,T ;Rm) + ∥u∥L1(0,T ;Rm) : u ∈ U

}
,

where ȳ is a reference trajectory, and the set of admissible controls is

U = {u : [0, T ] → Rm : u is measurable and |ui(t)| ≤ 1 a.e. for each i = 1, . . . ,m }.

The term ∥u∥2L2(0,T ;Rm) can be interpreted as a measure of the energy invested in controlling the

system, and the minimization of the term ∥u∥L1(0,T ;Rm) is known to induce sparsity of the solution.

Let R : [0, T ] → Rn×n be the resolvent of the matrix equation Ẋ = AX with initial condition
X(0) = I. The pair (u, y) satisfies (CS) if, and only if,

y(t) = R(t)y0 +R(t)

∫ t

0
R(s)−1 [B(s)u(s) + c(s)] dt.

This, in turn, is equivalent to

M(u, y) + z0 = 0,

where we have written

M(u, y)(t) = −y(t) +R(t)

∫ t

0
R(s)−1B(s)u(s) dt, and z0(t) = R(t)y0 +R(t)

∫ t

0
R(s)−1c(s) dt.

SetH = L2(0, T ;Rm)×L2(0, T ;Rn). SinceM is a bounded linear operator fromH to L2(0, T ;Rn),
the function Ψ1 : H → R, defined by

Ψ1(u, y) =
1

2
∥M(u, y) + z0∥2L2(0,T ;Rn),

is convex and continuously differentiable. On the other hand, since U is nonempty, closed in
L2(0, T ;Rm) and convex, the function Ψ2 : H → R ∪ {+∞}, defined by

Ψ2(u, y) = δU (u)
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(the indicator function of the set U), is proper, lower semicontinuous and convex. Moreover, the
pair (u, y) satisfies (CS) with u ∈ U if, and only if, (u, y) ∈ Argmin(Ψ1 +Ψ2). With this notation,
the optimal control problem (OCP) is equivalent to the constrained optimization problem

(COP) min {Φ1(u, y) + Φ2(u, y) : (u, y) ∈ Argmin(Ψ1 +Ψ2) },

where Φ1 : H → R is the convex and continuously differentiable function defined by

Φ1(u, y) =
1

2
∥y − ȳ∥2L2(0,T ;Rn) + ∥u∥2L2(0,T ;Rm),

and Φ2 : H → R ∪ {+∞} is the proper, lower semicontinuous and convex function given by

Φ2(u, y) = ∥u∥L1(0,T ;Rm).

5. Proofs

Recall that, by assumption (H0), the monotone operator T = A + ∇Φ + NC is maximal and
S = T−1(0) ̸= ∅. Its domain is dom(T) = C ∩ dom(A). The functions Φ and Ψ1 are differentiable
and their gradients ∇Φ and ∇Ψ1 are Lipschitz continuous with constants LΦ and LΨ1 , respectively.
Since minΨ1 = minΨ2 = 0, the function Ψ1 +Ψ2 vanishes on C = Argmin(Ψ1) ∩Argmin(Ψ2).

The proofs of Theorems 1−3 ultimately rely on a well-known tool from [32] (see the proper
statement in [7]) and [33] which gives weak convergence without a priori knowledge of the limit.

Lemma 15. Given a sequence (xn) in H, a sequence (λn) ̸∈ ℓ1 of positive numbers, set

zn =
1

τn

n∑
k=1

λkxk and ẑn =
1

τn

n∑
k=1

λkxk+1, with τn =

n∑
k=1

λk.

Let S be a subset of H and assume that

(i) for every x ∈ S, lim
n→∞

∥xn − x∥ exists;

(ii) every weak cluster point of (xn), respectively (zn), resp. (ẑn), lies in S.

Then (xn), respectively (zn), resp. (ẑn), converges weakly to a point in S as n → ∞.

The core of the convergence analysis is the following estimation:

Lemma 16. There exist a, b, c, d, e > 0 such that, for every u ∈ dom(T), z ∈ Au, v ∈ NC(u), and
w = z +∇Φ(u) + v, the following inequality holds for n large enough

(6) [1− aLΦλ
2
n]∥xn+1 − u∥2 − ∥xn − u∥2 + b∥xn+1 − xn∥2 + cλn∥∇Φ(xn+1)−∇Φ(u)∥2

+
d

2
λnβn(Ψ1 +Ψ2)(xn+1) + eλnβn∥∇Ψ1(xn)∥2

≤ d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+ 2λn⟨w, u− xn+1⟩.

The proof uses standard convex analysis tools along with very careful estimations. Since it is
highly technical, it will be given below in Subsection 5.1. A straightforward consequence of Lemma
16 is the following proposition, which contains the basic properties of the algorithm, including the
first assumption of Lemma 15:

Proposition 17. Assume (H0), (λnLΦ) ∈ ℓ2, and let (xn) be a sequence generated by the (SFBP)
Algorithm. Then the following holds:

i) For every u ∈ S, lim
n→∞

∥xn − u∥ exists.
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ii) The series
∑
n≥1

∥xn+1−xn∥2,
∑
n≥1

λnβnΨ1(xn),
∑
n≥1

λnβnΨ2(xn),
∑
n≥1

λn∥∇Φ(xn+1)−∇Φ(u)∥2

and
∑
n≥1

λnβn∥∇Ψ1(xn)∥2 converge.

iii) If moreover lim inf
n→∞

λnβn > 0, then
∑
n≥1

Ψ1(xn) and
∑
n≥1

Ψ2(xn) converge, lim
n→∞

Ψ1(xn) =

lim
n→∞

Ψ2(xn) = 0, and every weak cluster point of the sequence (xn) lies in C.

Indeed, if u ∈ S, then 0 ∈ Au + ∇Φ(u) + NC(u). Write 0 = z + ∇Φ(u) + v with z ∈ Au and
v ∈ NC(u). For n large enough, Lemma 16 gives

[1− aLΦλ
2
n]∥xn+1 − u∥2 − ∥xn − u∥2 + b∥xn+1 − xn∥2 + cλn∥∇Φ(xn+1)−∇Φ(u)∥2

+
d

2
λnβn(Ψ1 +Ψ2)(xn+1) + eλnβn∥∇Ψ1(xn)∥2 ≤

d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
.

Since the right-hand side is summable, all the parts of Proposition 17 ensue from the following
elementary fact concerning the convergence of real sequences:

Lemma 18. Let (an), (δn) and (εn) be nonnegative and let (ξn) be bounded from below. Assume

(1− an)ξn+1 − ξn + δn ≤ εn

for all n large enough. If (an) and (εn) belong to ℓ1, then (ξn) is convergent and (δn) belongs to ℓ1.

5.1. Proof of Lemma 16. Take u ∈ dom(T), z ∈ Au, v ∈ NC(u), and w = z + ∇Φ(u) + v.
Rewrite algorithm (SFBP) as

(7)
xn − xn+1

λn
−∇Φ(xn)− vn+1 − βnwn+1 − βn∇Ψ1(xn) = 0.

with vn+1 ∈ Axn+1 and wn+1 ∈ ∂Ψ2(xn+1).

Claim 19. The following inequality holds for every n:

(8) ∥xn+1 − u∥2 − ∥xn − u∥2 + ∥xn+1 − xn∥2 + 2λn⟨∇Φ(xn)−∇Φ(u), xn+1 − u⟩
+ 2λnβn⟨∇Ψ1(xn), xn+1 − u⟩ ≤ 2λn⟨∇Φ(u) + z, u− xn+1⟩ − 2λnβnΨ2(xn+1).

Proof. The monotonicity of A at points u and xn+1 gives

(9) 2λn⟨vn+1, u− xn+1⟩ ≤ 2λn⟨z, u− xn+1⟩.
The subdifferential inequality for function Ψ2 at xn+1 with wn+1 ∈ ∂Ψ2(xn+1) gives

(10) 2λnβn⟨wn+1, u− xn+1⟩ ≤ −2λnβnΨ2(xn+1).

To conclude, it suffices to sum (9) and (10), use (7), along with the fact that

2⟨xn+1 − xn, xn+1 − u⟩ = ∥xn+1 − u∥2 − ∥xn − u∥2 + ∥xn+1 − xn∥2,
and rearrange the terms conveniently. �

The next step is to estimate some of the terms in (8) (observe that the last two terms on the
left-hand side vanish if ∇Φ is constant or Ψ1 ≡ 0, which correspond to the cases LΦ = 0 and
LΨ1 = 0, respectively). At different points we shall use the Baillon-Haddad Theorem [10]:

Lemma 20 (Baillon-Haddad Theorem). Let f : H → R be a convex differentiable function and
Lf > 0. Then ∇f is Lipschitz continuous with constant Lf if and only if ∇f is 1

Lf
-cocoercive.

We also use the following Descent Lemma (see, for example [12]):
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Lemma 21 (Descent Lemma). Let f : H → R be continuously differentiable such that ∇f is
Lipschitz continuous with constant Lf . Then, for every x and y in H,

f(x+ y) ≤ f(x) + ⟨∇f(x), y⟩+
Lf

2
∥y∥2.

We have the following:

Claim 22. Assume ∇Φ is not constant. For every η > 0 we have:

2λn⟨∇Φ(xn)−∇Φ(u), xn+1−u⟩ ≥ −λ2
n

η
∥xn+1−u∥2−ηL2

Φ∥xn+1−xn∥2+
2λn

LΦ
∥∇Φ(xn+1)−∇Φ(u)∥2.

Proof. Write

⟨∇Φ(xn)−∇Φ(u), xn+1 − u⟩ = ⟨∇Φ(xn)−∇Φ(xn+1), xn+1 − u⟩+ ⟨∇Φ(xn+1)−∇Φ(u), xn+1 − u⟩.
We easily see that

2λn⟨∇Φ(xn)−∇Φ(xn+1), xn+1 − u⟩ ≥ −1

η
λ2
n∥xn+1 − u∥2 − ηL2

Φ∥xn+1 − xn∥2.

On the other hand, Lemma 20 implies

2λn⟨∇Φ(xn+1)−∇Φ(u), xn+1 − u⟩ ≥ 2λn

LΦ
∥∇Φ(xn+1)−∇Φ(u)∥2.

The result follows immediately. �

Claim 23. Assume Ψ1 ̸≡ 0. For all η, θ > 0 and n ∈ N we have

2λnβn⟨∇Ψ1(xn), xn+1 − u⟩ >
[

2

(1 + η)LΨ1

− (1 + θ)

1 + η
λnβn

]
λnβn∥∇Ψ1(xn)∥2

+
2η

1 + η
λnβnΨ1(xn+1)−

[
1

(1 + θ)(1 + η)
+

ηLΨ1

1 + η
λnβn

]
∥xn+1 − xn∥2.

Proof. Write

(11) 2λnβn⟨∇Ψ1(xn), xn+1 − u⟩ = 2λnβn⟨∇Ψ1(xn), xn+1 − xn⟩+ 2λnβn⟨∇Ψ1(xn), xn − u⟩.
A convex combination of the bounds given by Lemma 20 and the subdifferential inequality gives

(12) ⟨∇Ψ1(xn), xn − u⟩ ≥ 1

(1 + η)LΨ1

∥∇Ψ1(xn)∥2 +
η

1 + η
Ψ1(xn)

for any η > 0. Now take θ > 0 and use the identity

1

1 + θ
∥xn+1 − xn + (1 + θ)λnβn∇Ψ1(xn)∥2 =

1

1 + θ
∥xn+1 − xn∥2 + (1 + θ)λ2

nβ
2
n∥∇Ψ1(xn)∥2 + 2λnβn⟨∇Ψ1(xn), xn+1 − xn⟩,

to obtain

2λnβn⟨∇Ψ1(xn), xn+1 − xn⟩ ≥ − 1

1 + θ
∥xn+1 − xn∥2 − (1 + θ)λ2

nβ
2
n∥∇Ψ1(xn)∥2.

On the other hand, Lemma 21 at xn and xn+1 gives

2λnβn⟨∇Ψ1(xn), xn+1 − xn⟩ ≥ 2λnβn[Ψ1(xn+1)−Ψ1(xn)]− LΨ1λnβn∥xn+1 − xn∥2.
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A convex combination of the last two inequalities produces

(13) 2λnβn⟨∇Ψ1(xn), xn+1 − xn⟩ ≥ −1 + θ

1 + η
λ2
nβ

2
n∥∇Ψ1(xn)∥2

+
2η

1 + η
λnβn[Ψ1(xn+1)−Ψ1(xn)]−

[
1

(1 + η)(1 + θ)
+

ηLΨ1

1 + η
λnβn

]
∥xn+1 − xn∥2.

Finally, use (12) and (13) in (11) to conclude. �

Claim 24. There exist a, b, c, d, e > 0 such that for all sufficiently large n ∈ N we have

(14)
(
1− aLΦλ

2
n

)
∥xn+1 − u∥2 − ∥xn − u∥2 + b∥xn+1 − xn∥2 + cλn∥∇Φ(xn+1)−∇Φ(u)∥2

+ dλnβn(Ψ1 +Ψ2)(xn+1) + eλnβn∥∇Ψ1(xn)∥2 ≤ 2λn⟨∇Φ(u) + z, u− xn+1⟩.

Proof. We focus on the case where ∇Φ is not constant and Ψ1 ̸≡ 0. The other cases are simpler
and left to the reader. Claims 19, 22 and 23, and the fact that

−2λnβnΨ2(xn+1) ≤
−2η

1 + η
λnβnΨ2(xn+1)

for every η > 0, together imply[
1− λ2

n

η

]
∥xn+1 − u∥2 − ∥xn − u∥2 +

[
1− 1

(1 + θ)(1 + η)
− ηLΨ1

1 + η
λnβn − ηL2

Φ

]
∥xn+1 − xn∥2

+
2

LΦ
λn∥∇Φ(xn+1)−∇Φ(u)∥2 +

[
2

(1 + η)LΨ1

− (1 + θ)

1 + η
λnβn

]
λnβn∥∇Ψ1(xn)∥2

+
2η

1 + η
λnβn(Ψ1 +Ψ2)(xn+1) ≤ 2λn⟨∇Φ(u) + z, u− xn+1⟩

for every η, θ > 0. Set Γ = lim sup
n→∞

LΨ1λnβn < 2 and take θ0 > 0 small enough such that

2− (1 + θ0)λnβnLΨ1 ≥ 2− (1 + θ0)Γ > 0

for all sufficiently large n. Since

lim
η→0+

[
1− 1

(1 + θ)(1 + η)
− ηΓLΨ1

1 + η
− ηL2

Φ

]
= 1− 1

(1 + θ)
> 0,

we can take η0 > 0 so that (14) holds with a =
1

η0LΦ
, b = 1− 1

(1 + θ0)(1 + η0)
− η0ΓLΨ1

1 + η0
− η0L

2
Φ,

c =
2

LΦ
, d =

2η0
1 + η0

, and e =
2(1 + η0)(1 + θ0)LΨ1Γ

(1 + η0)LΨ1

, which are all positive. �

Proof of Lemma 16, completed. Observe that

2λn⟨∇Φ(u) + z, u− xn+1⟩ −
d

2
λnβn(Ψ1 +Ψ2)(xn+1)

= 2λn⟨v, xn+1 − u⟩ − d

2
λnβn(Ψ1 +Ψ2)(xn+1)− 2λn⟨w, xn+1 − u⟩

=
d

2
λnβn

[
⟨ 4v

dβn
, xn+1⟩ − (Ψ1 +Ψ2)(xn+1)− ⟨ 4v

dβn
, u⟩

]
− 2λn⟨w, xn+1 − u⟩

≤ d

2
λnβn

[
(Ψ1 +Ψ2)

∗
(

4v

dβn

)
− σC

(
4v

dβn

)]
− 2λn⟨w, xn+1 − u⟩
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because
4v

dβn
∈ NC(u) implies σC

(
4v

dβn

)
= ⟨ 4v

dβn
, u⟩. Whence

(15) 2λn⟨p− z, xn+1 − u⟩ ≤ d

2
λnβn(Ψ1 +Ψ2)(xn+1)

+
d

2
λnβn

[
(Ψ1 +Ψ2)

∗
(

4v

dβn

)
− σC

(
4v

dβn

)]
+ 2λn⟨w, u− xn+1⟩.

We obtain (6) by using (15) in (14) and rearranging the terms containing (Ψ1 +Ψ2)(xn+1). �

5.2. Weak ergodic convergence: proof of Theorem 1. In view of Lemma 15 and part i) of
Proposition 17, it suffices to prove that every weak cluster point of the sequence (zn), respectively
(ẑn), lies in S. By maximal monotonicity of T, a point x belongs to S if and only if ⟨w, u− x⟩ ≥ 0
for all u ∈ C ∩ dom(A) and all w ∈ T(u).

We begin with (ẑn). Take any u ∈ C ∩ dom(A) and w ∈ T(u). By Lemma 16, we have

(16) ∥xn+1 − u∥2 − ∥xn − u∥2 ≤ d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+ aLΦλ

2
n∥xn+1 − u∥2 + 2λn⟨w, u− xn+1⟩

for n large enough. Since ∥xn+1 − u∥ converges as n → ∞, it is bounded. Let a∥xn+1 − u∥2 ≤ M
for some M > 0 and every n. Take

εn =
d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+MLΦλ

2
n.

Assumption (H0) iii) and (λnLΦ) ∈ ℓ2 yield
∑
n≥1

εn < +∞. Summing up for k = 1, ..., n, we have

∥xn+1 − u∥2 − ∥x1 − u∥2 ≤ 2⟨w,
n∑

k=1

λku⟩ − 2⟨w,
n∑

k=1

λkxk+1⟩+
n∑

k=1

εk.

Removing the nonnegative term ∥xn+1 − u∥2 and dividing by 2τn = 2
n∑

k=1

λk, we get

(17)
−∥x1 − u∥2

2τn
≤ ⟨w, u− ẑn⟩+

1

2τn

n∑
k=1

εk.

Passing to the lower limit in (17) and using τn → ∞ as n → ∞ (because λn ̸∈ ℓ1) we deduce that

lim inf
n→∞

⟨w, u− ẑn⟩ ≥ 0.

If some subsequence (ẑnk
) converges weakly to x∞, then ⟨w, u− x∞⟩ ≥ 0. Thus x∞ ∈ S.

For the sequence (zn), we decompose the term ⟨w, u− xn+1⟩ in (16) and write

∥xn+1 − u∥2 − ∥xn − u∥2 ≤ d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+ aLΦλ

2
n∥xn+1 − u∥2 + 2λn⟨w, xn − xn+1⟩+ 2λn⟨w, u− xn⟩.
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Using 2λn⟨w, xn − xn+1⟩ ≤ λ2
n∥w∥2 + ∥xn+1 − xn∥2 in the last inequality and proceeding as above

we obtain

∥xn+1 − u∥2 − ∥x1 − u∥2 ≤ 2⟨w,
n∑

k=1

λku⟩ − 2⟨w,
n∑

k=1

λkxk⟩+
n∑

k=1

ζk,

where

ζn =
d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+ (MLΦ + ∥w∥2)λ2

n + ∥xn+1 − xn∥2.

Assumption (H0) iii), Proposition 17 ii) and the additional assumption (λn) ∈ ℓ2 give
∑
n≥1

ζn < +∞

and we conclude as before. �

5.3. Strong convergence: proof of Theorem 2. In this Section we treat the particular case
where additionally the maximal monotone operator A is strongly monotone, or the potential Φ is
strongly convex. Recall that A is strongly monotone with parameter α > 0 if

⟨x∗ − y∗, x− y⟩ ≥ α∥x− y∥2

whenever x∗ ∈ Ax and y∗ ∈ Ay. The potential Φ is strongly convex if ∇Φ is strongly monotone.
Since A, ∇Φ and NC are monotone, the operator T is also strongly monotone whenever A is
strongly monotone or Φ is strongly convex. Then, the set T−10 reduces to the singleton {u}, for
some u ∈ H. By the definition of S, there exist z ∈ Au and v ∈ NC(u) such that z+∇Φ(u)+v = 0.

The proof of Theorem 2 is a direct consequence of the following reinforced version of Lemma 16:

Lemma 25. There exist a, b, c, d, e > 0 such that, for n large enough, we have

αλn∥xn+1 − u∥2 + ∥xn+1 − u∥2 − ∥xn − u∥2 + b∥xn+1 − xn∥2 + cλn∥∇Φ(xn+1)−∇Φ(u)∥2

+
d

2
λnβn(Ψ1 +Ψ2)(xn+1) + eλnβn∥∇Ψ1(xn)∥2

≤ d

2
λnβn

[
(Ψ1 +Ψ2)

∗(
4v

dβn
)− σC(

4v

dβn
)

]
+ aLΦλ

2
n∥xn+1 − u∥2.

5.4. Weak convergence: proof of Theorem 3. This section achieves the proof of Theorem
3, that is the weak convergence of the sequence (xn) generated by the (SFBP) algorithm, in the
special case where A = ∂Φ2 is the subdifferential of a proper lower semicontinuous convex function
Φ2 : H → R ∪ {+∞}. Writing Φ1 instead of Φ, for the sake of symmetry, the (SFBP) algorithm
takes the form

(18)

{
x1 ∈ H,
xn+1 = (I + λn∂Φ2 + λnβn∂Ψ2)

−1(xn − λn∇Φ1(xn)− λnβn∇Ψ1(xn)) ∀ n ≥ 1.

Since ∂Φ2 +∇Φ1 +NC is maximal monotone, the solution set S is equal to

S = (∂Φ2 +∇Φ1 +NC)
−1(0) = Argmin{Φ1(u) + Φ2(u) : u ∈ ArgminΨ1 ∩ArgminΨ2}.

We prove the weak convergence of the sequence (xn) generated by algorithm (18) to some point
in S using Opial-Passty’s Lemma 15. The first assumption is satisfied from Proposition 17 i). The
second assumption, that every weak cluster point of (xn) belongs to S, will be verified in three
different cases (i), respectively (ii) and (iii), in Subsection 5.4.1, respectively Subsection 5.4.2.
Finally, in Subsection 5.4.3 we finish the proof of Theorem 3 with the minimizing property of the
sequence.
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5.4.1. Weak convergence in case (i): bounded inf-compactness. Denote by dist(.,S) the distance
function to the closed convex set S and set d(x) = 1

2dist(x, S)
2. The function d is convex and

differentiable, ∇d(x) = x− PS(x) where PS denotes the projection onto S.
The proof goes along the same lines as that of [5, Theorem 16]. In the next lemma, we prove that

lim
n→∞

d(xn) = 0. By the weak lower semicontinuity of the convex function d, it implies that every

weak cluster point of (xn) lies in S. Thus (xn) satisfies the second assumption of Opial-Passty’s
Lemma, and we deduce the weak convergence to some point in S. Besides, since lim inf

n→∞
λnβn > 0

by assumption, Proposition 17 iii) yields lim
n→∞

(Ψ1 + Ψ2)(xn) = 0. If we additionnaly assume that

(Ψ1 +Ψ2) is boundedly inf-compact, the bounded sequence (xn) is also relatively compact. Hence
its weak convergence implies its strong convergence. This achieves the proof of the first part of
Theorem 3 in Case (i).

Lemma 26. Under the assumptions of Theorem 3 (i), let (xn) be a sequence generated by the
(SFBP) algorithm. Then

lim
n→∞

d(xn) = 0.

Proof. We reformulate (18) as

(19) xn − xn+1 = λn∇Φ1(xn) + λnβn∇Ψ1(xn) + λnvn+1 + λnβnwn+1,

where vn+1 ∈ ∂Φ2(xn+1) and wn+1 ∈ ∂Ψ2(xn+1). The convexity of d with (19) yields

d(xn) ≥ d(xn+1) + ⟨xn+1 − PS(xn+1), xn − xn+1⟩
= d(xn+1) + λn⟨∇Φ1(xn) + vn+1, xn+1 − PS(xn+1)⟩(20)

+λnβn⟨∇Ψ1(xn), xn+1 − PS(xn+1)⟩+ λnβn⟨wn+1, xn+1 − PS(xn+1)⟩.
We treat each term on the right-hand side of (20). Let

α = min{(Φ1 +Φ2)(z); z ∈ C}.
Firstly for λn⟨∇Φ1(xn) + vn+1, xn+1 − PS(xn+1)⟩. Since Φ1 is convex we have

Φ1(PSxn+1) ≥ Φ1(xn) + ⟨∇Φ1(xn), PSxn+1 − xn⟩(21)

= Φ1(xn) + ⟨∇Φ1(xn), PSxn+1 − xn+1⟩+ ⟨∇Φ1(xn), xn+1 − xn⟩.
From Descent Lemma (Lemma 21) we have

Φ1(xn+1) ≤ Φ1(xn) + ⟨∇Φ1(xn), xn+1 − xn⟩+
LΦ1

2
∥xn+1 − xn∥2.

Using this in (21) it follows that

(22) Φ1(PSxn+1) ≥ Φ1(xn+1)−
LΦ1

2
∥xn+1 − xn∥2 + ⟨∇Φ1(xn), PSxn+1 − xn+1⟩.

On the other hand, the subdifferential inequality for Φ2 writes

(23) Φ2(PSxn+1) ≥ Φ2(xn+1) + ⟨vn+1, PSxn+1 − xn+1⟩.
Noting that Φ1(PSxn+1) + Φ2(PSxn+1) = α and adding (22) and (23) we get

(24) ⟨∇Φ1(xn) + vn+1, PSxn+1 − xn+1⟩ ≤ α− (Φ1 +Φ2)(xn+1) +
LΦ1

2
∥xn+1 − xn∥2.

Secondly for λnβn⟨∇Ψ1(xn), xn+1 − PS(xn+1)⟩. If Ψ1 = 0 then it is equal to zero. If Ψ1 ̸= 0, since
∇Ψ1(PSxn+1) = 0, the cocoercivity of ∇Ψ1 implies

⟨∇Ψ1(xn), PSxn+1 − xn⟩ ≤ − 1

LΨ1

∥∇Ψ1(xn)∥2.
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Adding the last inequality and

⟨∇Ψ1(xn), xn − xn+1⟩ ≤
1

LΨ1

∥∇Ψ1(xn)∥2 +
LΨ1

4
∥xn+1 − xn∥2,

we deduce

(25) ⟨∇Ψ1(xn), PSxn+1 − xn+1⟩ ≤
LΨ1

4
∥xn+1 − xn∥2.

Thirdly for λnβn⟨wn+1, xn+1 − PS(xn+1)⟩. Since wn+1 ∈ ∂Ψ2(wn+1) and 0 ∈ ∂Ψ2(PSxn+1), the
monotonicity of ∂Ψ2 implies

(26) ⟨wn+1, xn+1 − PSxn+1⟩ ≥ 0.

Combining (24), (25) and (26) in (20), and since lim sup
n→∞

(LΨ1λnβn) < 2, we deduce that

d(xn+1)− d(xn) + λn[(Φ1 +Φ2)(xn+1)− α] ≤ λn
LΦ1

2
∥xn+1 − xn∥2 + λnβn

LΨ1

4
∥xn+1 − xn∥2

≤ 1

2
∥xn+1 − xn∥2,

for n large enough. The remainder of the proof is an adaptation of the proof of [5, Theorem 16]:
considering that xn+1 may not lie in C, and we may not have (Φ1 + Φ2)(xn+1) − α ≥ 0 for every
n ∈ N, it is achieved by studying separately the two cases:
Case I: There exists n0 ∈ N such that (Φ1 +Φ2)(xn) ≥ α for all n ≥ n0.
Case II: For each n ∈ N there exists n′ > n such that (Φ1 +Φ2)(xn′) < α.

The details are left to the reader. �

5.4.2. Weak convergence in cases (ii) and (iii): bounded increase of the sequence (βn) and the
unconstrained case. As before, it suffices to prove that every weak cluster point of the sequence
(xn) generated by the (SFBP) algorithm lies in S to deduce its weak convergence to a point in S.

We decompose the proof in several lemmas. Let us introduce the penalized functions Ωn and Ω̃n

defined on H by

Ωn = Φ1 + βnΨ1 and Ω̃n = Φ2 + βnΨ2.

Being the sum of two smooth functions whose gradient is Lipschitz continuous, Ωn is, in turn,
a smooth function whose gradient is Lipschitz continuous with constant Ln = LΦ1 + βnLΨ1 . If
Ψ1 = 0, Ωn reduces to Φ1 and Ln = LΦ1 .

Lemma 27. Assume that (H0) hold with A = ∂Φ2, (λnLΦ) ∈ ℓ2 and let (xn) be a sequence generated
by the (SFBP ) algorithm. Then the following holds:

i) For every n ≥ 1 the penalized functions satisfy:[
Ωn+1(xn+1) + Ω̃n+1(xn+1)

]
−

[
Ωn(xn) + Ω̃n(xn)

]
+

[
1

λn
− Ln

2

]
∥xn+1 − xn∥2 ≤ (βn+1 − βn)(Ψ1 +Ψ2)(xn+1).

ii) If βn+1 − βn ≤ Kλn+1βn+1, or if Ψ1 = Ψ2 = 0, then the sequence
(
Ωn(xn) + Ω̃n(xn)

)
converges as n → ∞.

Proof of Part i). Apply Descent Lemma 21 to obtain

Ωn(xn+1)− Ωn(xn) ≤ ⟨∇Ωn(xn), xn+1 − xn⟩+
Ln

2
∥xn+1 − xn∥2.
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Using Ωn(xn+1) = Ωn+1(xn+1)− (βn+1 − βn)Ψ1(xn+1), it follows that

(27) Ωn+1(xn+1)− Ωn(xn) ≤ ⟨∇Ωn(xn), xn+1 − xn⟩+
Ln

2
∥xn+1 − xn∥2 + (βn+1 − βn)Ψ1(xn+1).

On the other hand, remark that

(28) Ω̃n+1(xn+1)− Ω̃n(xn) = Φ2(xn+1)−Φ2(xn)+βn [Ψ2(xn+1)−Ψ2(xn)]+(βn+1−βn)Ψ2(xn+1).

Recall the following formulation of the (SFBP) algorithm

xn − xn+1 = λn∇Φ1(xn) + λnβn∇Ψ1(xn) + λnvn+1 + λnβnwn+1,

with vn+1 ∈ ∂Φ2(xn+1) and wn+1 ∈ ∂Ψ2(xn+1). The subdifferential inequality at xn+1 of Φ2 and
Ψ2, respectively gives

Φ2(xn+1)− Φ2(xn) ≤ ⟨vn+1, xn+1 − xn⟩ and Ψ2(xn+1)−Ψ2(xn) ≤ ⟨wn+1, xn+1 − xn⟩.

Replacing this in (28) we obtain

Ω̃n+1(xn+1)− Ω̃n(xn) ≤ ⟨vn+1 + βnwn+1, xn+1 − xn⟩+ (βn+1 − βn)Ψ2(xn+1).

Adding (27) and the last inequality we deduce that

(29)[
Ωn+1(xn+1) + Ω̃n+1(xn+1)

]
−

[
Ωn(xn) + Ω̃n(xn)

]
≤ ⟨∇Ωn(xn) + vn+1 + βnwn+1, xn+1 − xn⟩

+
Ln

2
∥xn+1 − xn∥2 + (βn+1 − βn)(Ψ1 +Ψ2)(xn+1).

Therefore, just substitute the equality ∇Ωn(xn) + vn+1 + βnwn+1 = −xn+1−xn

λn
to conclude i).

Proof of Part ii). Since LΨ1λnβn < 2 for n large enough, from i) we have

(30)
[
Ωn+1(xn+1) + Ω̃n+1(xn+1)

]
−

[
Ωn(xn) + Ω̃n(xn)

]
≤ (βn+1 − βn)(Ψ1 +Ψ2)(xn+1) +

LΦ1

2
∥xn+1 − xn∥2.

Take an element u ∈ S and z ∈ ∂Φ2(u). Write the subdifferential inequality at u for Φ1 and Φ2 to
obtain

Ωn(xn) + Ω̃n(xn) ≥ Φ1(xn) + Φ2(xn)

≥ Φ1(u) + Φ2(u) + ⟨∇Φ1(u) + z, xn − u⟩.
(31)

Since (xn) is bounded by Proposition 17 i), the sequence
(
Ωn(xn) + Ω̃n(xn)

)
is bounded from

below. Now, if βn+1−βn ≤ Kλn+1βn+1, or if Ψ1 = Ψ2 = 0, the right-hand side of (30) is summable

from Proposition 17 ii). This implies the convergence of the sequence
(
Ωn(xn) + Ω̃n(xn)

)
. �

Lemma 28. Assume (H0), (λnLΦ) ∈ ℓ2, λn is bounded, and βn+1 − βn ≤ Kλn+1βn+1 for all n.
Let (xn) be a sequence generated by the (SFBP) algorithm. Then, for every u ∈ S, we have

(32)
∑
n≥1

λn

[
Ωn+1(xn+1) + Ω̃n+1(xn+1)− Φ1(u)− Φ2(u)

]
< +∞ (possibly −∞).



22 MARC-OLIVIER CZARNECKI, NAHLA NOUN, AND JUAN PEYPOUQUET

Proof. We write

(33) 2λn

[
Ωn+1(xn+1) + Ω̃n+1(xn+1)− Φ1(u)− Φ2(u)

]
=

2λn [Φ1(xn+1)− Φ1(u)] + 2λn [Φ2(xn+1)− Φ2(u)] + 2λnβn+1(Ψ1 +Ψ2)(xn+1).

The (SFBP) algorithm writes

vn+1 =
xn − xn+1

λn
−∇Φ1(xn)− βn∇Ψ1(xn)− βnwn+1

with vn+1 ∈ ∂Φ2(xn+1) and wn+1 ∈ ∂Ψ2(xn+1). The subdifferential inequality of Φ1 and Φ2 gives,
respectively,

Φ1(xn+1)− Φ1(u) ≤ ⟨∇Φ1(xn+1), xn+1 − u⟩ and Φ2(xn+1)− Φ2(u) ≤ ⟨vn+1, xn+1 − u⟩.
Thus

2λn

[
Ωn+1(xn+1) + Ω̃n+1(xn+1)− Φ1(u)− Φ2(u)

]
≤

2λn⟨∇Φ1(xn+1), xn+1 − u⟩+ 2λn⟨vn+1, xn+1 − u⟩+ 2λnβn+1(Ψ1 +Ψ2)(xn+1).

Write 2⟨xn+1 − xn, xn+1 − u⟩ = ∥xn+1 − xn∥2 + ∥xn+1 − u∥2 − ∥xn − u∥2 and deduce

(34)

2λn

[
Ωn+1(xn+1) + Ω̃n+1(xn+1)− Φ1(u)− Φ2(u)

]
≤ −∥xn+1 − xn∥2 − ∥xn+1 − u∥2 + ∥xn − u∥2

+ 2λn⟨∇Φ1(xn+1)−∇Φ1(xn), xn+1 − u⟩+ 2λnβn⟨∇Ψ1(xn), u− xn+1⟩
+ 2λnβn⟨wn+1, u− xn+1⟩+ 2λnβn+1Ψ2(xn+1) + 2λnβn+1Ψ1(xn+1).

We now treat each term on the right-hand side of (34).
For the term 2λn⟨∇Φ1(xn+1)−∇Φ1(xn), xn+1−u⟩, use the Cauchy-Schwartz inequality to write

2λn⟨∇Φ1(xn+1)−∇Φ1(xn), xn+1 − u⟩ ≤ 2λn∥∇Φ1(xn+1)−∇Φ1(xn)∥∥xn+1 − u∥
≤ 2λnLΦ1∥xn+1 − xn∥∥xn+1 − u∥
≤ LΦ1∥xn+1 − xn∥2 + λ2

nLΦ1∥xn+1 − u∥2.

Since
∑
n≥1

∥xn+1 − xn∥2 < +∞,
∑
n≥1

λ2
nLΦ1 < +∞ and (∥xn − u∥) is bounded, we deduce that

(35)
∑
n≥1

2λn⟨∇Φ1(xn+1)−∇Φ1(xn), xn+1 − u⟩ < +∞.

For the term 2λnβn⟨∇Ψ1(xn), u− xn+1⟩ on the right-hand side of (34), write

(36) 2λnβn⟨∇Ψ1(xn), u− xn+1⟩ = 2λnβn⟨∇Ψ1(xn), u− xn⟩+ 2λnβn⟨∇Ψ1(xn), xn − xn+1⟩.
On the one hand, the monotonicity of the gradient and the fact u ∈ C, together imply

(37) ⟨∇Ψ1(xn), u− xn⟩ ≤ 0.

On the other hand, we have

2λnβn⟨∇Ψ1(xn), xn − xn+1⟩ ≤ λ2
nβ

2
n∥∇Ψ1(xn)∥2 + ∥xn+1 − xn∥2.

Therefore, if LΨ1 ̸= 0, Proposition 17 ii) and the bound λnβn < 2
LΨ1

for n large enough, yield

(38)
∑
n≥1

λnβn⟨∇Ψ1(xn), xn − xn+1⟩ < +∞.

Combining (37) and (38) in (36), we conclude

(39)
∑
n≥1

λnβn⟨∇Ψ1(xn), u− xn+1⟩ < +∞.
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If LΨ1 = 0, use the Cauchy-Schwartz inequality and write

2λnβn⟨∇Ψ1(xn), u− xn+1⟩ ≤ 2λnβn∥∇Ψ1(xn)∥∥u− xn+1∥,

which is summable, since ∥u − xn+1∥ is bounded, ∥∇Ψ1(xn)∥ = a∥∇Ψ1(xn)∥2 with a > 0, and in
view of Proposition 17 ii).

Next, for the term 2λnβn⟨wn+1, u − xn+1⟩ + 2λnβn+1Ψ2(xn+1), if Ψ2 = 0, its value is zero.
Otherwise, we assume βn+1 − βn ≤ Kλn+1βn+1 and use the subdifferential inequality for Ψ2 at
xn+1 and u:

⟨wn+1, u− xn+1⟩ ≤ −Ψ2(xn+1),

to write

2λnβn⟨wn+1, u− xn+1⟩+ 2λnβn+1Ψ2(xn+1) ≤ 2Kλnλn+1βn+1Ψ2(xn+1).

Since λn is bounded by assumption and
∑
n≥1

λn+1βn+1Ψ2(xn+1) < ∞ by Proposition 17 iii), it

follows that

(40)
∑
n≥1

[λnβn⟨wn+1, u− xn+1⟩+ λnβn+1Ψ2(xn+1)] < +∞.

For the remaining term 2λnβn+1Ψ1(xn+1) on the right-hand side of (34), it is equal to zero if
Ψ1 = 0. Otherwise, we assume βn+1 − βn ≤ Kλn+1βn+1, and we write

λnβn+1Ψ1(xn+1) = λnβnΨ1(xn+1) + λn(βn+1 − βn)Ψ1(xn+1).

Noting that λnβn < 2/LΨ1 for n large enough, λn is bounded, and λn(βn+1−βn) ≤ Kλnλn+1βn+1,
Proposition 17 iii) yields

∑
n≥1

λnβnΨ1(xn+1) < +∞ and
∑
n≥1

λn(βn+1 − βn)Ψ1(xn+1) < +∞. We

then deduce that

(41)
∑
n≥1

λnβn+1Ψ1(xn+1) < +∞.

Finally we conclude (32) from (34) by using (35), (39), (40), (41) and the fact that

(42)
∑
n≥1

∥xn − u∥2 − ∥xn+1 − u∥2 ≤ ∥x1 − u∥2.

�

Lemma 29. Assume (H0) and (λnLΦ) ∈ ℓ2. Assume moreover that one of the following conditions
holds:

(i) lim inf
n→∞

λnβn > 0, (λn) is bounded and βn+1 − βn ≤ Kλn+1βn+1 for some K > 0.

(ii) Ψ1 = Ψ2 = 0.

Let (xnk
) be a subsequence of (xn) that converges weakly to some x∞ as n → ∞. Then

x∞ ∈ S = Argmin{Φ1(x) + Φ2(x) : x ∈ Argmin(Ψ1 +Ψ2)}.

Proof. Since
∑
n≥1

λn = +∞ by the last statement of Hypotheses (H0), Lemmas 27 ii) and 28

together imply

(43) lim
n→∞

[
Ωn(xn) + Ω̃n(xn)

]
≤ Φ1(u) + Φ2(u) ∀u ∈ S.
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Now, in view of (43), the weak lower semicontinuity of Φ1 and Φ2 yields

Φ1(x∞) + Φ2(x∞) ≤ lim inf
k→∞

Φ1(xnk
) + lim inf

k→∞
Φ2(xnk

)(44)

≤ lim inf
k→∞

Ωnk
(xnk

) + lim inf
k→∞

Ω̃nk
(xnk

)

≤ lim inf
k→∞

[
Ωnk

(xnk
) + Ω̃nk

(xnk
)
]

= lim
n→∞

[
Ωn(xn) + Ω̃n(xn)

]
≤ Φ1(u) + Φ2(u) ∀u ∈ S.

Under Assumption (i), x∞ belongs to C by Proposition 17 iii). Under Assumption (ii), C = H.
Thus x∞ ∈ S and every weak cluster point of (xn) lies in S. �

5.4.3. Minimizing property in cases (ii) and (iii). The first part of Theorem 3, the weak conver-
gence of the sequence (xn), is proved in Subsection 5.4.1 in Case (i), and in Subsection 5.4.2 in Cases
(ii) and (iii). For the second part, recalling that ∇Φ1(u) = −p and z ∈ ∂Φ2(u), the subdifferential
inequality of Φ1 +Φ2 at u ∈ S yields

(45) (Φ1 +Φ2)(xn) ≥ (Φ1 +Φ2)(u) + ⟨z − p, xn − u⟩.
Passing to the lower limit in (45), using p− z ∈ NC(u) and the fact that (xn) weakly converges to
a point in S (First part of Theorem 3), it follows that

lim inf
n→∞

(Φ1 +Φ2)(xn) ≥ (Φ1 +Φ2)(u).

On the other hand, using (43) we have

lim sup
n→∞

(Φ1 +Φ2)(xn) ≤ lim
n→∞

[
Ωn(xn) + Ω̃n(xn)

]
≤ Φ1(u) + Φ2(u).

Combining the last two inequalities with the fact that u ∈ S, the second part of Theorem 3 directly
follows. �
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