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Abstract. The forward-backward algorithm is a powerful tool for solving optimization problems with a additively separable and
smooth plus nonsmooth structure. In the convex setting, a simple but ingenious acceleration scheme developed by Nesterov improves the
theoretical rate of convergence for the function values from the standard O(k−1) down to O(k−2). In this short paper, we prove that the
rate of convergence of a slight variant of Nesterov’s accelerated forward-backward method, which produces convergent sequences, is actually
o(k−2), rather than O(k−2). Our arguments rely on the connection between this algorithm and a second-order differential inclusion with
vanishing damping.
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Introduction. Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖, and consider
the problem

(1) min {Ψ(x) + Φ(x) : x ∈ H}

where Ψ : H → R ∪ {+∞} is a proper lower-semicontinuous convex function, and Φ : H → R is a continuously
differentiable convex function, whose gradient is Lipschitz continuous.

The forward-backward method, which generalizes the gradient projection algorithm [9, 11], was proposed in [12], and
[21] to overcome the inherent difficulties of minimizing the nonsmooth sum of two functions, as in (1), while exploiting
its additively separable and smooth plus nonsmooth structure. It gained popularity in image processing following [8]
and [7]: when Ψ is the ℓ1 norm in R

N and Φ is quadratic, this gives the iterative shrinkage-thresholding algorithm

(ISTA). Some time later, a decisive improvement came with [4], where ISTA was successfully combined with Nesterov’s
acceleration scheme [15] to produce the fast iterative shrinkage-thresholding algorithm (FISTA). For general Φ and Ψ,
and after some simplification, the accelerated forward-backward method can be written as the following iteration:

(2)







yk = xk + k−1
k+α−1 (xk − xk−1)

xk+1 = proxsΨ (yk − s(∇Φ(yk))) ,

where α > 0 and s > 0, and the points x0 and x1 are arbitrarily taken in H. Here, proxf denotes the proximal

mapping of a function f (see [3, Definition 12.23] or [20, Definition 1.1]). This algorithm is closely connected with
proximal-based inertial algorithms [1, 14, 23]. The choice α = 3 is current common practice. The remarkable property
of this algorithm is that, despite its simplicity and computational efficiency −equivalent to that of the classical
forward-backward method−, it guarantees a convergence rate of

(

Ψ+Φ
)

(xk)−min(Ψ + Φ) = O(k−2).

More precisely, let L be the Lipschitz constant of ∇Φ and let D denote the distance from the initial point x0 to the
set of solutions for (1). Setting s = 1/L, we have

(3)
(

Ψ +Φ
)

(xk)−min(Ψ + Φ) ≤
2LD2

(k + 1)2

(see [16], or also [10]). Observe that this bound is uniform with respect to the objective functions. In turn, the
convergence rate obtained for the unaccelerated counterpart is just O(k−1).

Nevertheless, while sequences generated by the classical forward-backward method are (weakly) convergent, the
convergence of the sequence (xk) generated by (2) to a minimizer of Φ + Ψ puzzled researchers for over two decades.
This question was recently settled in [5] and [2] independently, using different arguments. In [5], the authors use a
descent inequality satisfied by forward-backward iterations (see also [6, Section 2.2]). In turn, the proof given in [2]
relies on the connection between (2) and the differential inclusion

(4) ẍ(t) +
α

t
ẋ(t) + ∂Ψ(x(t)) +∇Φ(x(t)) ∋ 0.
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†Institut de Mathématiques et Modélisation de Montpellier, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095
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Indeed, as pointed out in [26, 2], algorithm (2) can be seen as an appropriate finite-difference discretization of (4). In
[26], the authors studied the equation

(5) ẍ(t) +
α

t
ẋ(t) +∇Θ(x(t)) = 0,

where Θ is a smooth convex function on H, and proved that

Θ(x(t))−minΘ = O(t−2)

when α ≥ 3. Most of our arguments (as well as those in [2]) are inspired by their analysis. Convergence of the
trajectories was obtained in [2] for α > 3. The study of the long-term behavior of the trajectories satisfying this
evolution equation has given important insight into Nesterov’s acceleration method and its variants, and the present
work is based on this relationship. If α > 3, we actually have

Θ(x(t)) −minΘ = o(t−2),

which means that
lim
t→∞

t2
(

Θ(x(t))−minΘ
)

= 0.

Although it can be derived from the arguments in [2], it was May [13] who first pointed out this fact, giving a different
proof. This is another justification for the interest of taking α > 3 instead of α = 3.

The purpose of this paper is to show that sequences generated by Nesterov’s accelerated version of the forward-
backward method approximate the optimal value of the problem with a rate that is strictly faster than O(k−2), namely
o(k−2).

At several points in this paper, we shall make the following set of assumptions.

Hypothesis (H). The function Ψ : H → R ∪ {+∞} is proper, lower-semicontinuous and convex, and the function
Φ : H → R is convex and continuously differentiable with L-Lipschitz continuous gradient. The set S = argmin(Ψ+Φ)
is nonempty and 0 < s ≤ 1

L
.

The main result of this paper is the following.

Theorem 1. Let Hypothesis (H) hold and let (xk) be a sequence generated by algorithm (2) with α > 3. Then,

(6) lim
k→∞

k2
(

(Ψ + Φ)(xk)−min(Ψ + Φ)
)

= 0 and lim
k→∞

k‖xk+1 − xk‖ = 0.

In other words, (Ψ + Φ)(xk)−min(Ψ + Φ) = o(k−2) and ‖xk+1 − xk‖ = o(k−1).

Moreover, we recover some results from [2, Section 5], closely connected with the ones in [5], with simplified
arguments.

Some comments are in order: First, as shown in [2, Example 2.13], there is no p > 2 such that the order of
convergence is O(k−p) for every Φ and Ψ. In this sense, Theorem 1 is optimal. Second, Nesterov [15] gave an example
of a function Φ : RN → R for which the algorithm described by (2) (with Ψ ≡ 0) would satisfy

(7) Φ(xk)−minΦ ≥
3D2

32(k + 1)2
,

as long as k ≤ (N − 1)/2, where, as in (3), D denotes the distance from the initial point x0 to the set of solutions for
(1) (see [16, Theorem 2.1.7] or [10, Section 3.3]). Theorem 1 does not contradict this fact, and implies that inequality
(7) cannot hold for all k.

We close this paper by establishing a tolerance estimation that guarantees that the order of convergence is preserved
when the iterations given in (2) are computed inexactly (see Theorem 4). Inexact FISTA-like algorithms have also
been considered in [24, 25].

1. Main results. Throughout this section, Hypothesis (H) is in force, and the sequence (xk) is generated by
algorithm (2) with α ≥ 3. To simplify the notation, we set Θ = Ψ+Φ. For standard convex analysis background, see
[3, 22].

1.1. Some important estimations. We begin by establishing the basic properties of the sequence (xk). Some
results can be found in [2, 5] (especially, Facts 2 and 3), for which we provide simplified proofs. As mentioned above,
many arguments can be traced back to [26] (see, for instance, the definition of E given in (8) and (9)).

Let x∗ ∈ argminΘ = S. For each k ∈ N, set

(8) E(k) :=
2s

α− 1
(k + α− 2)2 (Θ(xk)−Θ(x∗)) + (α− 1)‖zk − x∗‖2,
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where

(9) zk :=
k + α− 1

α− 1
yk −

k

α− 1
xk = xk +

k − 1

α− 1
(xk − xk−1).

The key idea is to verify that the sequence (E(k)) has Lyapunov-type properties. By introducing the operator Gs :
H → H, defined by

Gs(y) =
1

s
(y − proxsΨ (y − s∇Φ(y)))

for each y ∈ H, the formula for xk+1 in algorithm (2) can be rewritten as

(10) xk+1 = yk − sGs(yk).

The variable zk, defined in (9), will play an important role. Simple algebraic manipulations give

(11) zk+1 =
k + α− 1

α− 1
(yk − sGs(yk))−

k

α− 1
xk = zk −

s

α− 1
(k + α− 1)Gs(yk).

The operator Gs satisfies

(12) Θ(y − sGs(y)) ≤ Θ(x) + 〈Gs(y), y − x〉 −
s

2
‖Gs(y)‖

2

for all x, y ∈ H (see [4, 5, 20, 26]), since s ≤ 1
L
, and ∇Φ is L-lipschitz continuous. Let us write successively this

formula at y = yk and x = xk, then at y = yk and x = x∗. We obtain

(13) Θ(yk − sGs(yk)) ≤ Θ(xk) + 〈Gs(yk), yk − xk〉 −
s

2
‖Gs(yk)‖

2

and

(14) Θ(yk − sGs(yk)) ≤ Θ(x∗) + 〈Gs(yk), yk − x∗〉 −
s

2
‖Gs(yk)‖

2,

respectively. Multiplying the first inequality by k
k+α−1 , and the second one by α−1

k+α−1 , then adding the two resulting
inequalities, and using the fact that xk+1 = yk − sGs(yk), we obtain

Θ(xk+1) ≤
k

k + α− 1
Θ(xk) +

α− 1

k + α− 1
Θ(x∗)−

s

2
‖Gs(yk)‖

2 +

〈

Gs(yk),
k

k + α− 1
(yk − xk) +

α− 1

k + α− 1
(yk − x∗)

〉

.

Since
k

k + α− 1
(yk − xk) +

α− 1

k + α− 1
(yk − x∗) =

α− 1

k + α− 1
(zk − x∗),

we obtain

(15) Θ(xk+1) ≤
k

k + α− 1
Θ(xk) +

α− 1

k + α− 1
Θ(x∗) +

α− 1

k + α− 1
〈Gs(yk), zk − x∗〉 −

s

2
‖Gs(yk)‖

2.

We shall obtain a recursion from (15). To this end, observe that (11) gives

zk+1 − x∗ = zk − x∗ −
s

α− 1
(k + α− 1)Gs(yk).

After developing

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 − 2
s

α− 1
(k + α− 1) 〈zk − x∗, Gs(yk)〉+

s2

(α− 1)2
(k + α− 1)

2 ‖Gs(yk)‖
2,

and multiplying the above expression by (α−1)2

2s(k+α−1)2
, we obtain

(α− 1)2

2s (k + α− 1)
2

(

‖zk − x∗‖2 − ‖zk+1 − x∗‖2
)

=
α− 1

k + α− 1
〈Gs(yk), zk − x∗〉 −

s

2
‖Gs(yk)‖

2.

Replacing this in (15), we deduce that

Θ(xk+1) ≤
k

k + α− 1
Θ(xk) +

α− 1

k + α− 1
Θ(x∗) +

(α− 1)2

2s (k + α− 1)2
(

‖zk − x∗‖2 − ‖zk+1 − x∗‖2
)

.
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Equivalently,

Θ(xk+1)−Θ(x∗) ≤
k

k + α− 1
(Θ(xk)−Θ(x∗)) +

(α − 1)2

2s (k + α− 1)2
(

‖zk − x∗‖2 − ‖zk+1 − x∗‖2
)

.

Multiplying by 2s
α−1 (k + α− 1)

2
, we obtain

2s

α− 1
(k + α− 1)

2
(Θ(xk+1)−Θ(x∗)) ≤

2s

α− 1
k (k + α− 1) (Θ(xk)−Θ(x∗)) + (α− 1)

(

‖zk − x∗‖2 − ‖zk+1 − x∗‖2
)

,

which implies
2s

α− 1
(k + α− 1)

2
(Θ(xk+1)−Θ(x∗)) + 2s

α− 3

α− 1
k (Θ(xk)−Θ(x∗))

≤
2s

α− 1
(k + α− 2)

2
(Θ(xk)−Θ(x∗)) + (α− 1)

(

‖zk − x∗‖2 − ‖zk+1 − x∗‖2
)

,

in view of
k (k + α− 1) = (k + α− 2)

2 − k(α− 3)− (α− 2)2 ≤ (k + α− 2)
2 − k(α− 3).

In other words,

(16) E(k + 1) + 2s
α− 3

α− 1
k (Θ(xk)−Θ(x∗)) ≤ E(k).

We then deduce the following facts.

Fact 1. The sequence
(

E(k)
)

is nonincreasing and lim
k→∞

E(k) exists.

In particular, E(k) ≤ E(0) and we have:

Fact 2. For each k ≥ 0, we have Θ(xk)−Θ(x∗) ≤
(α− 1)E(0)

2s(k + α− 2)2
and ‖zk − x∗‖2 ≤

E(0)

α− 1
.

From (16), we also obtain the following fact.

Fact 3. If α > 3, then

∞
∑

k=1

k
(

Θ(xk)−Θ(x∗)
)

≤
(α − 1)E(1)

2s(α− 3)
.

Now, using (13) and recalling that xk+1 = yk − sGs(yk) and yk − xk = k−1
k+α−1 (xk − xk−1), we obtain

(17) Θ(xk+1) +
1

2s
‖xk+1 − xk‖

2 ≤ Θ(xk) +
1

2s

(k − 1)2

(k + α− 1)2
‖xk − xk−1‖

2.

Subtract Θ(x∗) on both sides, and set θk := Θ(xk)−Θ(x∗) and dk := 1
2s‖xk+1 − xk‖2. We can write (17) as

(18) θk+1 + dk ≤ θk +
(k − 1)2

(k + α− 1)2
dk−1.

Since k + α− 1 ≥ k + 1, (18) implies

(k + 1)2dk − (k − 1)2dk−1 ≤ (k + 1)2(θk − θk+1).

But then
(k + 1)2(θk − θk+1) = k2θk − (k + 1)2θk+1 + (2k + 1)θk ≤ k2θk − (k + 1)2θk+1 + 3kθk

for k ≥ 1, and so

2kdk + k2dk − (k − 1)2dk−1 ≤ (k + 1)2dk − (k − 1)2dk−1

≤ (k + 1)2(θk − θk+1)

≤ k2θk − (k + 1)2θk+1 + 3kθk

for k ≥ 1. Summing for k = 1, . . . ,K, we obtain

K2dK + 2

K
∑

k=1

kdk ≤ θ1 +
3(α− 1)E(1)

2s(α− 3)

in view of Fact 3. Using this inequality, along with (16) (with k = 1), we obtain the following result.

Fact 4. If α > 3, then

∞
∑

k=1

k‖xk+1 − xk‖
2 ≤

(α− 1)E(1)

s(α− 3)
.

Remark 1. Observe that the upper bounds given in Facts 3 and 4 tend to infinity as α tends to 3.
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1.2. From O(k−2) to o(k−2). Recall that Ψ : H → R ∪ {+∞} is proper, lower-semicontinuous and convex,
Φ : H → R is convex and continuously differentiable with L-Lipschitz continuous gradient, and Θ = Φ +Ψ. We sup-
pose that S = argmin(Ψ + Φ) 6= ∅, and let (xk) be a sequence generated by algorithm (2) with α > 3 and 0 < s ≤ 1

L
.

We shall prove that (6) holds. In other words, that (Ψ + Φ)(xk)−min(Ψ + Φ) = o(k−2) and ‖xk+1 − xk‖ = o(k−1).

The following result is new, and plays a central role in the proof of Theorem 1.

Lemma 2. If α > 3, then lim
k→∞

[

k2‖xk+1 − xk‖2 + (k + 1)2
(

Θ(xk+1)−Θ(x∗)
)

]

exists.

Proof. Since k + α− 1 ≥ k, inequality (18) gives

k2dk − (k − 1)2dk−1 ≤ k2(θk − θk+1).

But

(k + 1)2θk+1 − k2θk = k2(θk+1 − θk) + (2k + 1)θk+1 ≤ k2(θk+1 − θk) + 2(k + 1)θk+1,

and so

(19)
[

k2dk + (k + 1)2θk+1

]

−
[

(k − 1)2dk−1 + k2θk

]

≤ 2(k + 1)θk+1.

The result is obtained by observing that k2dk + (k + 1)2θk+1 is bounded from below and the right-hand side of (19)
is summable (by Fact 3).

We are now in a position to prove Theorem 1.

Proof of Theorem 1. From Facts 3 and 4, we deduce that

∞
∑

k=1

1

k

[

k2‖xk+1 − xk‖
2 + (k + 1)2

(

Θ(xk+1)−Θ(x∗)
)

]

< +∞.

Combining this with Lemma 2, we obtain

lim
k→∞

[

k2‖xk+1 − xk‖
2 + (k + 1)2

(

Θ(xk+1)−Θ(x∗)
)

]

= 0.

Since all the terms are nonnegative, we conclude that both limits are 0, as claimed. �

Remark 2. Facts 3 and 4, also imply that the function values and the velocities satisfy

lim inf
k→∞

k2 ln(k)
(

(Ψ + Φ)(xk)−min(Ψ + Φ)
)

= 0 and lim inf
k→∞

k ln(k)‖xk+1 − xk‖ = 0,

respectively. Indeed, if βk is any nonnegative sequence such that
∞
∑

k=1

βk

k
< ∞ (which holds for (k2dk) and (k2θk)),

then it cannot be true that lim inf
k→∞

βk ln(k) ≥ ε > 0. Otherwise, βk

k
≥ ε

k ln(k) for all sufficiently large k, and the series

above would be divergent.

1.3. Convergence of the sequence. It is possible to prove that the sequences generated by (2) converge weakly
to minimizers of Ψ + Φ when α > 3. Although this was already shown in [2, 5], we provide a proof following the
preceding ideas, for completeness.

Theorem 3. Let Hypothesis (H) hold, and let (xk) be a sequence generated by algorithm (2) with α > 3. Then,

the sequence (xk) converges weakly to a point in S.

Proof. Take any x∗ ∈ S. Using the definition (9) of zk, we write

‖zk − x∗‖2 =

(

k − 1

α− 1

)2

‖xk − xk−1‖
2 + 2

k − 1

α− 1
〈xk − x∗, xk − xk−1〉+ ‖xk − x∗‖2

=

[

(

k − 1

α− 1

)2

+

(

k − 1

α− 1

)

]

‖xk − xk−1‖
2 +

(

k − 1

α− 1

)

[

‖xk − x∗‖2 − ‖xk−1 − x∗‖2
]

+ ‖xk − x∗‖2.

We shall prove that lim
k→∞

‖zk − x∗‖ exists. By Lemma 2 (or Theorem 1) and Fact 4, it suffices to prove that

δk := (k − 1)
[

‖xk − x∗‖2 − ‖xk−1 − x∗‖2
]

+ (α− 1)‖xk − x∗‖2
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has a limit as k → ∞. Clearly, (δk) is bounded, by Facts 2 and 4. Write hk := ‖xk − x∗‖2 and notice that

δk+1 − δk = (α − 1)(hk+1 − hk) + k(hk+1 − hk)− (k − 1)(hk − hk−1)

= (k + α− 1)(hk+1 − hk)− (k − 1)(hk − hk−1).(20)

On the other hand, from (14), we obtain

Θ(xk+1)−Θ(x∗) ≤ 〈Gs(yk), yk − x∗〉 −
s

2
‖Gs(yk)‖

2.

Since xk+1 = yk − sGs(yk), we have

0 ≤ 2〈yk − xk+1, yk − x∗〉 − ‖yk − xk+1‖
2

= ‖yk − xk+1‖
2 + ‖yk − x∗‖2 − ‖xk+1 − x∗‖2 − ‖yk − xk+1‖

2,

and so

‖xk+1 − x∗‖2 ≤ ‖yk − x∗‖2

=

∥

∥

∥

∥

xk − x∗ +
k − 1

k + α− 1
(xk − xk−1)

∥

∥

∥

∥

2

= ‖xk − x∗‖2 +

(

k − 1

k + α− 1

)2

‖xk − xk−1‖
2 + 2

k − 1

k + α− 1
〈xk − x∗, xk − xk−1〉

= ‖xk − x∗‖2 +

[

(

k − 1

k + α− 1

)2

+
k − 1

k + α− 1

]

‖xk − xk−1‖
2 +

k − 1

k + α− 1

[

‖xk+1 − x∗‖2 − ‖xk − x∗‖2
]

≤ ‖xk − x∗‖2 + 2‖xk − xk−1‖
2 +

k − 1

k + α− 1

[

‖xk − x∗‖2 − ‖xk−1 − x∗‖2
]

.

In other words,

(k + α− 1)(hk+1 − hk)− (k − 1)(hk − hk−1) ≤ 2(k + α− 1)‖xk − xk−1‖
2.

Substituting this in (20), we deduce that

δk+1 − δk ≤ 2(k + α− 1)‖xk − xk−1‖
2.

Since the right-hand side is summable and (δk) is bounded, lim
k→∞

δk exists. It follows that lim
k→∞

‖zk − x∗‖ exists. In

view of Theorem 1 and the definition (9) of zk, lim
k→∞

‖xk − x∗‖ exists. Since this holds for any x∗ ∈ S, Opial’s Lemma

[19] (see, for instance, [22, Lemma 5.2]) shows that the sequence (xk) converges weakly, as k → +∞, to a point in S.

1.4. Stability under additive errors. Consider the inexact version of algorithm (2) given by

(21)







yk = xk + k−1
k+α−1 (xk − xk−1)

xk+1 = proxsΦ (yk − s(∇Ψ(yk)− gk)) .

The second relation means that

yk − s∇Ψ(yk) ∈ xk+1 + s
(

∂Φ(xk+1) + B̄(0, εk+1)
)

for any εk+1 ≥ ‖gk‖. It turns out that it is possible to give a tolerance estimation for the sequence of errors (gk) in
order to ensure that all the asymptotic properties of (2) (including the o(k−2) order of convergence) hold for (21).
More precisely, we have the following:

Theorem 4. Let Hypothesis (H) hold, and let (xk) be a sequence generated by algorithm (21) with α > 3. If
∑

∞

k=1 k‖gk‖ < +∞, then, lim
k→∞

k2
(

(Ψ + Φ)(xk) − min(Ψ + Φ)
)

= 0 and lim
k→∞

k‖xk+1 − xk‖ = 0. Moreover, (xk)

converges weakly to a point in S.

The key idea is to observe that, for each k ≥ 1, we have

E(k) ≤ E(0) +
k−1
∑

j=0

2s (j + α− 1) 〈gj, zj+1 − x∗〉
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(with the same definitions of zk and E(k) given in (9) and (8), respectively). This implies

‖zk − x∗‖2 ≤
1

α− 1
E(0) +

2s

α− 1

k
∑

j=1

(j + α− 2) ‖gj−1‖‖zj − x∗‖.

Then, we apply Lemma [2, Lemma A.9] with ak = ‖zk − x∗‖ to deduce that the sequence (zk) is bounded and so, the
modified energy sequence (F(k)), given by

F(k) :=
2s

α− 1
(k + α− 2)

2
(Θ(xk)−Θ(x∗) + (α− 1)‖zk − x∗‖2 +

∞
∑

j=k

2s (j + α− 1) 〈gj , zj+1 − x∗〉 ,

is well defined and nonincreasing. The rest of the proof follows similar arguments as the ones given above with E
replaced by F (see also [2, Section 5]).

Inexact FISTA-like algorithms have also been considered in [24, 25]. It would be interesting to obtain similar
order-of-convergence results under relative error conditions.
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