
LAGRANGIAN-PENALIZATION ALGORITHM FOR CONSTRAINED

OPTIMIZATION AND VARIATIONAL INEQUALITIES

P. FRANKEL AND J. PEYPOUQUET

Abstract. Let X, Y be real Hilbert spaces. Consider a bounded linear operator A : X → Y and
a nonempty closed convex set C ⊂ Y . In this paper we propose an inexact proximal-type algorithm
to solve constrained optimization problems

(P) inf{f(x) : Ax ∈ C},

where f is a proper lower-semicontinuous convex function on X; and variational inequalities

(VI) 0 ∈ Mx + A
∗
NC(Ax),

where M : X ⇉ X is a maximal monotone operator and NC denotes the normal cone to the set
C. Our method combines a penalization procedure involving a bounded sequence of parameters,
with the predictor corrector proximal multiplier method of [12]. Under suitable assumptions the
sequences generated by our algorithm are proved to converge weakly to solutions of (P) and (VI).
As applications, we describe how the algorithm can be used to find sparse solutions of linear
inequality systems and solve partial differential equations by domain decomposition.

Introduction

Let X,Y be real Hilbert spaces. Given a proper lower-semicontinuous function f : X → R ∪
{+∞}, a nonempty closed convex subset C of Y and a bounded linear operator A : X → Y , consider
the following problem

(P) min{f(x) : Ax ∈ C}.

Here f is the objective function and C is a set of constraints for the observations of x given by Ax.
Denote by S the solution set of (P). Let us mention two simple instances of this problem:

1. Inequality constraints in mathematical programming. Let A = (An
m) be a M × N matrix and

let b ∈ RM . For the problem of minimizing f : RN → R subject to Ax ≤ b the set C is given by
C = {y ∈ RM : ym ≤ bm, m = 1, . . . ,M}. More generally, one can require the observations Ax of
the vector x to take values under given thresholds c1, . . . , cJ for valuation functions g1, . . . , gJ . In
that case, C = {y ∈ RM : gj(y) ≤ cj , j = 1, . . . , J}. �

2. Domain decomposition for partial differential equations. Let us consider a bounded domain
Ω ⊂ RN which is decomposed in two non-overlapping subdomains Ω1 and Ω2 with a common
interface Γ. Consider the problem of finding a function on Ω satisfying some elliptic differential
equations on Ω1 and Ω2 and such that the jump when passing from Ω1 to Ω2 is nonnegative. For
the Poisson equation with right-hand side h and Neumann boundary conditions, the variational
formulation is

inf

{
1

2

∫

Ω1

|∇u|2 −

∫

Ω1

hu +
1

2

∫

Ω2

|∇v|2 −

∫

Ω2

hv; (u, v) ∈ H1(Ω1) × H1(Ω2) and u|Γ ≥ v|Γ

}
.
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Here X = H1(Ω1) × H1(Ω2), Y = L2(Γ), A(u, v) = u|Γ − v|Γ, C = {y ∈ Y : y ≥ 0} and

f(u, v) = 1
2

∫
Ω1

|∇u|2 −
∫
Ω1

hu + 1
2

∫
Ω2

|∇v|2 −
∫
Ω2

hv. �

This paper is concerned with a new algorithm of proximal type that provides a solution for
problem (P). It can also be applied to solve constrained variational inequalities of the form

(VI) 0 ∈ Mx + A∗NC(Ax),

where M : X ⇉ X is a maximal monotone operator and NC denotes the normal cone to the set C.

Notice that x is a solution of problem (P) if and only if 0 ∈ ∂(f + δC ◦ A)(x), where δC is the
indicator function of the set C. Recalling that ∂δC = NC , we observe that if M = ∂f then any
solution of (VI) is a solution of (P). Equivalence holds under qualification conditions. It occurs,
for instance, if C − A(domf) is a neighborhood of the origin (see [9, Theorem 2.168]).

Our method has been inspired by two classical approaches:

1. Penalization. Let us introduce a penalization function P : Y → [0,+∞) such that P (y) = 0 if,
and only if, y ∈ C. Following [7], [14] or [4], one way to approximate points in S is to apply either
a diagonal or an alternating proximal point algorithm to the family (fk) of functions given by

fk(x) = f(x) + βkP (Ax), (1)

while letting βk → +∞. The idea behind is that, since the proximal point algorithm tends to
minimize the function fk, once βk is large, the cost given by βkP (Ax) will force Ax to be close to
C in some sense. This approach is especially useful when the set C is expressed as a sublevel set of
a convex function or as intersections of such sets. Several theoretical or practical choices for the
function P are available. For instance, one can take P (·) = d(·, C), the distance function to C. For

the case of linear inequality constraints one can use P (y) =
∑M

m=1

[
ym − bm

]
+
, where [r]+ denotes

the positive part of r ∈ R.

The penalization procedure described above using (1) provides a solution of (P). However, it
often involves parameters that tend either to 0 or +∞, which might lead to numerical instabilities
or ill-conditioning. �

2. Lagrangian duality. Let σC denote the support function of the set C and define the Lagrangian
function L(x, µ) = f(x) + 〈µ,Ax〉 − σC(µ), where 〈·, ·〉 denotes the inner product in Y . Observe
that problem (P) is

(P) inf
x∈X

sup
µ∈Y

L(x, µ) = inf
x∈X

{f(x) : Ax ∈ C}

(see [8, Chapter V]). If (x∗, µ∗) is a saddle point of L then Ax∗ ∈ C and x∗ is a solution of (P)1.
The operator T : X × Y ⇉ X × Y defined by T (x, µ) = (∂f(x) + A∗µ, ∂σC(µ) − Ax) is maximal
monotone and its zeroes coincide with the saddle points of L (see [20]). Therefore, one can obtain
solutions of (P) by applying the proximal point algorithm to T (see [10], [21] or [19]). One drawback
is the implementation complexity due to the presence of the support function σC . �

1Also µ∗ is a solution of the dual problem

(P∗) sup
µ∈Y

inf
x∈X

L(x,µ) = sup
µ∈Y

{f∗(−A
∗
µ) − σC(µ)}.
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In order to solve problems (P) and (VI) we propose a Lagrangian-based approach that incor-
porates a sort of penalization function for the set C. It is worth mentioning that neither divergent
penalization parameters nor vanishing step sizes come into play. The method uses the prediction-
correction ideas introduced in [12] for minimization problems, but keeping a multiplier for the
constraint involving P . This multiplier can also be interpreted as a vector of penalization parame-
ters with an updating rule that prevents them from growing indefinitely. The prediction-correction
steps also allow to circumvent the problem of computing resolvents of sums. All the analysis is
carried out in a Hilbert space setting.

This paper is organized as follows: In Section 1 we discuss on the problems (P) and (VI),
alternative formulations and their sets of solutions. We present our Lagrangian-based algorithm
with explicitly evaluated prediction/correction steps for the Lagrange multipliers and describe our
main results. The convergence analysis in the context of problem (VI) is presented in Section 2.
Section 3 contains additional results for problem (P). The remainder is devoted to applications. In
Section 4 we explain how the algorithm can be used to obtain sparse solutions for a system of linear
inequalities. Section 5 contains a domain decomposition method for partial differential equations
with a unilateral transfer through the boundary.

1. Preliminaries

Since no confusion should arise, all inner products (in X, Y and RM ) will be denoted by 〈·, ·〉
and the corresponding norms by | · |.

Let P = (pm)Mm=1 be a l-Lipschitz vector-valued function on Y such that each component pm is
nonnegative and convex. Assume that the set C is defined by

C = { y ∈ Y : P (y) = 0 }.

Set H = X × Y × Y × RM . In order to simplify the notation, let us write ∂P = (∂pm)Mm=1.
Following [20, 6], given a maximal monotone operator M : X ⇉ X we define the monotone2

operator NM : H ⇉ H by

NM(x, y, µ, ν) = (Mx + A∗µ,−µ + 〈ν, ∂P (y)〉,−Ax + y,−P (y)).

Since each component pm is continuous, for each fixed ν ∈ RM we have ∂(〈ν, P (·)〉)(y) = 〈ν, ∂P (y)〉
for all y ∈ Y . Therefore, the operator 〈ν, ∂P 〉 : Y ⇉ Y is maximal monotone. Write SM = N−1

M 0
and observe that a point (x∗, y∗, µ∗, ν∗) ∈ H belongs to SM if, and only if,

−A∗µ∗ ∈ Mx∗, µ∗ ∈ 〈ν∗, ∂P (y∗)〉, Ax∗ = y∗, and P (y∗) = 0.

If (x∗, y∗, µ∗, ν∗) ∈ SM then x∗ satisfies (VI) because 〈ν∗, ∂P (y∗)〉 ⊂ NC(y∗). The converse depends
on the function P . For example, if P (·) = d(·, C) and x∗ satisfies (VI), then there exist y∗, µ∗ and
ν∗ such that (x∗, y∗, µ∗, ν∗) ∈ SM.

On the other hand, by introducing an auxiliary variable y ∈ Y we can rewrite (P) as

inf{f(x) : Ax = y and P (y) = 0} = inf{f(x) : (x, y) ∈ C},

where
C = { (x, y) ∈ X × Y : Ax = y, y ∈ C }

is the set of primal feasible points.

Define the Lagrangian function L : H → R ∪ {+∞} by

L(x, y, µ, ν) = f(x) + 〈µ,Ax − y〉 + 〈ν, P (y)〉. (2)

2Maximality is irrelevant for our convergence analysis.
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A point w∗ = (x∗, y∗, µ∗, ν∗) ∈ H is a saddle point of L if

L(x∗, y∗, µ, ν) ≤ L(x∗, y∗, µ∗, ν∗) ≤ L(x, y, µ∗, ν∗) (3)

for all (x, y, µ, ν) ∈ H. The set of saddle points of L coincides with S∂f (see [20]). Observe that if
(x∗, y∗, µ∗, ν∗) is a saddle point of the Lagrangian then (x∗, y∗) ∈ C and x∗ is a solution of (P).

In order to find points in SM, we propose the following method. Let us take w0 ∈ H and define
the sequence (wk) inductively as follows: given wk−1 = (xk−1, yk−1, µk−1, νk−1) we introduce a
prediction (µ̃k, ν̃k) for the multipliers using the proximal point algorithm. This idea is motivated
by [12]. By linearity, this accounts to

(A1)

{
µ̃k = µk−1 + λk(Axk−1 − yk−1)
ν̃k = νk−1 + λkP (yk−1).

Proximal steps with respect to the state variables (x, y) read

−
xk − xk−1

λk
− A∗µ̃k ∈ Mxk and −

yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃k
m∂pm(yk), (4)

respectively. If M = ∂f these correspond to




xk = Argminx∈X

{
L(x, yk−1, µ̃k, ν̃k) + 1

2λk
|x − xk−1|2

}

yk = Argminy∈Y

{
L(xk−1, y, µ̃k, ν̃k) + 1

2λk
|y − yk−1|2

}
.

Due to the maximal monotonicity of M and 〈ν, ∂P 〉, each of the inclusions given by (4) has a
unique solution by virtue of Minty’s Theorem. However, since they might be difficult to solve it is
important to use approximate or relaxed versions. For ε ≥ 0 set

Mεx = {x∗ ∈ X : 〈x∗ − u∗, x − u〉 ≥ −ε for all u∗ ∈ Mu }.

We always have M ⊂ Mε. Moreover, if M = ∂f then ∂f ⊂ ∂εf ⊂ (∂f)ε, where ∂ε denotes the
standard ε-approximate subdifferential. We consider the inclusions

(A2) −
xk − xk−1

λk
− A∗µ̃k ∈ Mεk

xk and −
yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃k
m∂εk

pm(yk),

for εk ≥ 0. Finally, the multipliers are updated using:

(A3)

{
µk = µk−1 + λk(Axk − yk)
νk = νk−1 + λkP (yk).

In the following sections we shall prove the weak convergence of the sequence (wk) generated
by (A1) − (A3) to a point in SM under a summability assumption on the error sequence (εk)
and a boundedness assumption on the step sizes (λk). For a general maximal monotone operator
M we require Y to be finite-dimensional, an assumption that is already present in [12]. When
M is the subdifferential of some proper lower-semicontinuous function f : X → R ∪ {+∞}, this
hypothesis on the dimension of Y can be eliminated. Moreover, we also establish the existence of
limk→+∞ L(xk, yk, µk, νk) and limk→+∞ f(xk), which provide a key tool for upgrading convergence
from weak to strong in the application described in Section 5.
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2. Convergence toward SM

The purpose of this section is to prove the following:

Theorem 1. Let X be a real Hilbert space and Y = Rp. Let SM 6= ∅ and assume (εk) ∈ ℓ1

and 0 < λ ≤ λk ≤ λ < max{ 1√
2‖A‖ ,

1√
2+l2

}. Any sequence (xk, yk, µk, νk) generated by Algorithm

(A1) − (A3) converges weakly as k → +∞ to some (x∞, y∞, µ∞, ν∞) ∈ SM.

We start by deriving the fundamental estimations that will support the convergence analysis.
For w ∈ H, let us write

|||w|||2 = |x|2 + |y|2 + |µ|2 + |ν|2.

Lemma 2. Let (x∗, y∗, µ∗, ν∗) ∈ SM. Then for all k ∈ N we have

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2

+
(
1 − 2λ2

k‖A‖2
)
|xk − xk−1|2 +

(
1 − λ2

k(2 + l2)
)
|yk − yk−1|2 ≤ 2λk(M + 1)εk. (5)

Proof. Let (x∗, y∗, µ∗, ν∗) ∈ SM. From the definition of Mε and (A2) we have
〈

A∗µ∗ −
xk − xk−1

λk

− A∗µ̃k, x∗ − xk

〉
≤ εk,

and we infer that

|xk − x∗|2 − |xk−1 − x∗|2 + |xk − xk−1|2 + 2λk〈µ̃
k − µ∗, A(xk − x∗)〉 ≤ 2λkεk. (6)

On the other hand, the εk-approximate subdifferential inequality for each ν̃kpm gives

2λk〈ν̃
k, P (y∗) − P (yk)〉 ≥ −2λk

〈
yk − yk−1

λk
− µ̃k, y∗ − yk

〉
− 2λkMεk

by summation. Hence

|yk − y∗|2 − |yk−1 − y∗|2 + |yk − yk−1|2 + 2λk〈ν̃
k, P (yk)−P (y∗)〉+ 2λk〈µ̃

k, y∗− yk〉 ≤ 2λkMεk. (7)

Moreover we have µ∗ ∈ 〈ν∗, ∂P (y∗)〉, and so

2λk〈−µ∗, y∗ − yk〉 − 2λk〈ν
∗, P (yk) − P (y∗)〉 ≤ 0. (8)

Summing up inequalities (6), (7) and (8), and using that Ax∗ = y∗, one obtains

|xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2

+ |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2

+2λk

[
〈µ̃k − µ∗, Axk − yk〉 + 〈ν̃k − ν∗, P (yk)〉

]
≤ 2λk(M + 1)εk. (9)

We rewrite the term in the bracket as follows

〈µ̃k − µ∗, Axk − yk〉 + 〈ν̃k − ν∗, P (yk)〉

= 〈µ̃k − µk, Axk − yk〉 + 〈ν̃k − νk, P (yk)〉 + 〈µk − µ∗, Axk − yk〉 + 〈νk − ν∗, P (yk)〉

=
1

λk
〈µ̃k − µk, µk − µk−1〉 +

1

λk
〈ν̃k − νk, νk − νk−1〉 +

1

λk
〈µk − µ∗, µk − µk−1〉 +

1

λk
〈νk − ν∗, νk − νk−1〉

=
1

2λk

[|µ̃k − µk−1|2 − |µ̃k − µk|2 − |µk − µk−1|2] +
1

2λk

[|ν̃k − νk−1|2 − |ν̃k − νk|2 − |νk − νk−1|2]

+
1

2λk
[|µk − µ∗|2 + |µk − µk−1|2 − |µk−1 − µ∗|2] +

1

2λk
[|νk − ν∗|2 + |νk − νk−1|2 − |νk−1 − ν∗|2].

(10)
To simplify the notation, define

ρk = |xk − xk−1|2 + |yk − yk−1|2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2.
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Recall that |||w|||2 = |x|2 + |y|2 + |µ|2 + |ν|2 for w ∈ H. Replacing equality (10) in (9), we deduce
that

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + ρk − |µ̃k − µk|2 − |ν̃k − νk|2 ≤ 2λk(M + 1)εk.

To conclude, observe that

|µ̃k − µk|2 = λ2
k|A(xk−1 − xk) − (yk−1 − yk)|2 ≤ 2λ2

k‖A‖2|xk − xk−1|2 + 2λ2
k|y

k − yk−1|2,

while

|ν̃k − νk|2 = λ2
k|P (yk−1) − P (yk)|2 ≤ λ2

kl
2|yk − yk−1|2.

Adding the last three inequalities we obtain (5). �

In order to prove the convergence of the algorithm first recall the following elementary result for
real sequences. A proof can be found, for instance, in [5, Lemma 2].

Lemma 3. Let (ak), (bk) and (ηk) be real sequences. Assume that (ak) is bounded from below, (bk)
is nonnegative and (ηk) ∈ l1. Assume also that ak+1 − ak + bk ≤ ηk for every k ∈ N. Then (ak)
converges and (bk) ∈ l1.

An immediate consequence of Lemmas 2 and 3 is the following:

Proposition 4. Let SM 6= ∅ and assume (εk) ∈ ℓ1 and 0 < λ ≤ λk ≤ λ < max{ 1√
2‖A‖ ,

1√
2+l2

}.

We have the following:

(i) the sequences (|xk − xk−1|2), (|yk − yk−1|2), (|Axk − yk|2), (|P (yk)|2) are summable;

(ii) for every (x∗, y∗, ν∗, µ∗) ∈ SM, limk→+∞ |||(xk, yk, µk, νk) − (x∗, y∗, µ∗, ν∗)||| exists in R.

In order to prove the main result of this section we shall use Opial’s Lemma [18], which we recall
for the sake of completeness:

Lemma 5 (Opial). Let H be a Hilbert space endowed with the norm ‖ · ‖. Let (ξn) be a sequence

of H such that there exists a nonempty set Ξ ⊂ H which verifies

(a) for all ξ ∈ Ξ, lim
n→+∞

‖ξn − ξ‖ exists,

(b) if (ξnk
) ⇀ ξ weakly in H as k → +∞, we have ξ ∈ Ξ.

Then the sequence (ξn) converges weakly in H as n → +∞ to a point in Ξ.

We are now in position to prove the main result of this section.

Proof of Theorem 1. Let (xk, yk, µk, νk) be a sequence generated by Algorithm (A1) − (A3).
In view of item (ii) of Proposition 4, the quantity |||wk − w||| has a limit as n → +∞ for every
w ∈ SM. This shows point (a) in Opial’s Lemma. To prove point (b), suppose a subsequence of
(xk, yk, µk, νk), still denoted (xk, yk, µk, νk), that converges weakly to (x∞, y∞, µ∞, ν∞), i.e. (xk)
weakly converges toward x∞ in X and (yk, µk, νk) strongly converges toward (y∞, µ∞, ν∞) in
Y × Y × RM . We must show that (x∞, y∞, µ∞, ν∞) ∈ SM. Using the closedness of the function
(x, y) ∈ X × Y → |Ax− y|2 ∈ R+ and the continuity of the function P and item (i) of Proposition
4, we have

|Ax∞ − y∞|2 ≤ lim inf
k→+∞

|Axk − yk|2 = 0,

P (y∞) = lim
k→+∞

P (yk) = 0,

hence Ax∞ − y∞ = 0 and P (y∞) = 0, which implies (x∞, y∞) ∈ C. Let (x, x∗) be in the graph of
M. In view of (A2), we have

〈−
xk − xk−1

λk
− A∗µ̃k − x∗, xk − x〉 ≥ −εk.
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Notice that, in view of Proposition 4(i), limk→+∞−xk−xk−1

λk
= 0. Moreover limk→+∞ |Axk−yk| = 0,

hence the sequence (µ̃k) strongly converges in Y toward µ∞. Using also the continuity of the
operator A∗, we can pass to the limit in the above inequality to obtain

〈−A∗µ∞ − x∗, x∞ − x〉 ≥ 0.

Using the maximality of the operator M, this implies −A∗µ∞ ∈ Mx∞. Let now (y, y∗) in the
graph of 〈ν∞, ∂P 〉, we have

〈ν∞, P (yk) − P (y)〉 ≥ 〈y∗, yk − y〉.

Moreover in view of (A2), we have

〈ν̃k, P (y) − P (yk)〉 ≥

〈
−

yk − yk−1

λk
+ µ̃k, y − yk

〉
− Mεk.

Adding these two last inequalities, we obtain

〈ν∞ − ν̃k, P (yk) − P (y)〉 ≥

〈
y∗ +

yk − yk−1

λk

− µ̃k, yk − y

〉
− Mεk.

In view of Proposition 4(i), limk→+∞
yk−yk−1

λk
= 0. Moreover limk→+∞ P (yk) = 0, hence the

sequence (ν̃k) strongly converges in Y toward ν∞. We can pass to the limit in the above inequality
to obtain

〈µ∞ − y∗, y∞ − y〉 ≥ 0.

By maximality of the operator 〈ν∞, ∂P 〉, this implies that µ∞ ∈ 〈ν∞, ∂P (y∞)〉. This achieves to
prove that (x∞, y∞, µ∞, ν∞) ∈ SM. �

Remark 6. If M is strongly monotone with parameter α > 0, the algorithm can be slightly
modified in order to obtain strong convergence in Theorem 1. It suffices to redefine the operator
Mε for ε ≥ 0 as

M̃εx = {x∗ ∈ X : 〈x∗ − u∗, x − u〉 ≥ α‖x − u‖2 − ε for all u∗ ∈ Mu }.

The strong monotonicity of M implies that one still has M ⊂ M̃ε. Following the argument in
Lemma 2 we deduce that

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + 2αλk‖x
k − x∗‖2 ≤ 2λk(M + 1)εk

for all k ∈ N, where x∗ is the unique solution of (VI) and w∗ is any element in SM. The details
are left to the reader. This immediately implies that xk converges strongly to x∗ as k → +∞.

3. Further results for M = ∂f

If M = ∂f a more detailed analysis can be carried out and some results can be improved. In
particular, the assumption on the dimension of Y can be omitted. Moreover, part (ii) in Proposition
9 below is used in Section 5 to upgrade convergence from weak to strong in a domain decomposition
method for partial differential equations. In this section, we assume that the primal steps are
computed using the approximate subdifferentials. Namely,

(A2′) −
xk − xk−1

λk

− A∗µ̃k ∈ ∂εk
f(xk) and −

yk − yk−1

λk

+ µ̃k ∈
M∑

m=1

ν̃k
m∂εk

pm(yk),

for εk ≥ 0. We shall prove the following:
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Theorem 7. Let X and Y be real Hilbert spaces. Let S∂f 6= ∅ and assume (εk) ∈ ℓ1 and 0 < λ ≤

λk ≤ λ < max{ 1√
2‖A‖ ,

1√
2+l2

}. Any sequence (xk, yk, µk, νk) generated by Algorithm (A1)−(A2′)−

(A3) converges weakly as k → +∞ to some (x∞, y∞, µ∞, ν∞) ∈ S∂f .

We begin with a reinforced version of Lemma 2:

Lemma 8. Let (x∗, y∗, µ∗, ν∗) have the saddle-point property. Then for all k ∈ N we have

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2

+
(
1 − 2λ2

k‖A‖2
)
|xk − xk−1|2 +

(
1 − λ2

k(2 + l2)
)
|yk − yk−1|2

+2λk

[
L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗)

]
≤ 2λk(M + 1)εk. (11)

Proof. The subdifferential inequality for f gives

2λk(f(x) − f(xk)) ≥ −2λk

〈
xk − xk−1

λk

+ A∗µ̃k, x − xk

〉
− 2λkεk

= |xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2 + 2λk〈µ̃
k, A(xk − x)〉 − 2λkεk

for all x ∈ X. On the other hand, the subdifferential inequality for each ν̃kpm gives

2λk〈ν̃
k, P (y) − P (yk)〉 ≥ −2λk

〈
yk − yk−1

λk
− µ̃k, y − yk

〉
− 2λkMεk

= |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2 + 2λk〈µ̃
k, y − yk〉 − 2λkMεk

for all y ∈ Y . Summing up, one obtains

|xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2

+ |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2

+ 2λk

[
L(xk, yk, µ̃k, ν̃k) − L(x, y, µ̃k, ν̃k)

]
≤ 2λk(M + 1)εk. (12)

Let (x∗, y∗, µ∗, ν∗) have the saddle-point property and take x = x∗ and y = y∗ in (12). Since
L(x∗, y∗, µ̃k, ν̃k) ≤ L(x∗, y∗, µ∗, ν∗), we obtain

|xk − x∗|2 − |xk−1 − x∗|2 + |xk − xk−1|2

+ |yk − y∗|2 − |yk−1 − y∗|2 + |yk − yk−1|2

+ 2λk

[
L(xk, yk, µ̃k, ν̃k) − L(x∗, y∗, µ∗, ν∗)

]
≤ 2λk(M + 1)εk. (13)

We can write

L(xk, yk, µ̃k, ν̃k) − L(x∗, y∗, µ∗, ν∗) = L(xk, yk, µ̃k, ν̃k) − L(xk, yk, µ∗, ν∗)

+L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗)

= 〈µ̃k − µ∗, Axk − yk〉 + 〈ν̃k − ν∗, P (yk)〉

+L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗).

Using equality (10), complete the proof of (11) as in Lemma 2. �

The following complements Proposition 4.

Proposition 9. Let S∂f 6= ∅ and assume (εk) ∈ ℓ1 and 0 < λ ≤ λk ≤ λ < max{ 1√
2‖A‖ ,

1√
2+l2

}.

We have the following:

(i) for each (x∗, y∗, ν∗, µ∗) ∈ S∂f , the sequence (L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗)) is in ℓ1;

(ii) limk→+∞ L(xk, yk, µk, νk) = L(x∗, y∗, µ∗, ν∗) and limk→+∞ f(xk) = f(x∗).
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Proof. Item (i) is an immediate consequence of Lemmas 8 and 3 because each of the terms
L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗) is nonnegative in view of the saddle-point property. We deduce
that limk→+∞(L(xk, yk, µ∗, ν∗)−L(x∗, y∗, µ∗, ν∗)) = 0. By Proposition 4 (i), limk→+∞ Axk−yk = 0,
limk→+∞ P (yk) = 0 and the sequences (µk) and (νk) are bounded. This easily implies (ii). �

We can now prove the main result of this section.

Proof of Theorem 7. Let (xk, yk, µk, νk) be any sequence generated by Algorithm (A1)−(A2′)−
(A3). In view of item (ii) of Proposition 4, the quantity |||wk −w||| has a limit as n → +∞ for every
w ∈ S∂f . This shows point (a) in Opial’s Lemma. To prove point (b), suppose a subsequence of

(xk, yk, µk, νk), still denoted (xk, yk, µk, νk), converges weakly to (x∞, y∞, µ∞, ν∞). We must show
that (x∞, y∞, µ∞, ν∞) is a saddle-point for the Lagrangian function L. Using the closedness of the
functions (x, y) ∈ X × Y → |Ax − y|2 ∈ R+ and |P | and item (i) of Proposition 4, we have

|Ax∞ − y∞|2 ≤ lim inf
k→+∞

|Axk − yk|2 = 0,

|P (y∞)| ≤ lim inf
k→+∞

|P (yk)| = 0,

hence Ax∞ − y∞ = 0 and P (y∞) = 0, which implies (x∞, y∞) ∈ C. Let us fix (x, y) ∈ X × Y . For
all N ∈ N we have

2

N∑

k=1

λk(L(xk, yk, µ̃k, ν̃k) − L(x, y, µ̃k, ν̃k)) ≤ |x0 − x|2 + |y0 − y|2 + 2λ(M + 1)

∞∑

k=1

εk

in view of inequality (12). Therefore, lim infk→+∞(L(xk, yk, µ̃k, ν̃k) − L(x, y, µ̃k, ν̃k)) ≤ 0. Notice
that, since lim

k→∞
|Axk−yk| = lim

k→∞
|P (yk)| = 0, the sequence (µ̃k, ν̃k) converges weakly to (µ∞, ν∞) ∈

Y × R. We deduce that

lim
k→∞

L(x, y, µ̃k, ν̃k) = lim
k→∞

(
f(x) + 〈µ̃k, Ax − y〉 + 〈ν̃k, P (y)〉

)

= f(x) + 〈µ∞, Ax − y〉 + 〈ν∞, P (y)〉

= L(x, y, µ∞, ν∞).

Moreover

L(xk, yk, µ̃k, ν̃k) = f(xk) + 〈µ̃k, Axk − yk〉 + 〈ν̃k, P (yk)〉 (14)

and the last two terms tend to 0 as k → +∞. Whence

lim inf
k→+∞

f(xk) = lim inf
k→+∞

L(xk, yk, µ̃k, ν̃k) ≤ lim inf
k→+∞

L(x, y, µ̃k, ν̃k) = lim
k→+∞

L(x, y, µ̃k, ν̃k) = L(x, y, µ∞, ν∞).

Finally, using the fact that every limit point of (xk, yk) is feasible along with closedness of the
function f , we infer that

L(x∞, y∞, µ∞, ν∞) = f(x∞) ≤ lim inf
k→+∞

f(xk) ≤ L(x, y, µ∞, ν∞).

We now must prove that, for every (µ, ν) ∈ Y × R, we have

L(x∞, y∞, µ, ν) ≤ L(x∞, y∞, µ∞, ν∞).

This is clear since Ax∞−y∞ = 0 and P (y∞) = 0. We have proved that every weak cluster point of
the sequence (xk, yk, µk, νk) is a saddle-point for the Lagrangian function L and the result follows
from Opial’s Lemma. �
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Remark 10. Our penalization scheme is exact in the following sense: Let (x∗, y∗, µ∗, ν∗) ∈ S∂f

and let
x̂ ∈ Argmin{f(x) + 〈ν, P (Ax)〉,

with νm > ν∗
m for m = 1, . . . ,M . Then x̂ is a solution of (P). Indeed, from the definition of x̂ and

the saddle-point property (3), we have

f(x̂) + 〈ν, P (Ax̂)〉 ≤ f(x∗) ≤ f(x̂) + 〈ν∗, P (Ax̂)〉.

Since νm > ν∗
m for each m = 1, . . . ,M one must have P (Ax̂) = 0 and f(x̂) ≤ f(x∗), which implies

x̂ is a solution of (P).

4. Sparse solutions for linear inequality systems

Let A = (An
m) be a M × N matrix and let b ∈ RM and consider the problem

min{ ‖x‖1 : Ax ≤ b }. (15)

This is the convex relaxation of the nonconvex problem (see [17]) of finding the sparsest solutions
to the system of inequalities Ax ≤ b, which is stated as

min{ ‖x‖0 : Ax ≤ b },

where ‖ · ‖0 denotes the counting norm (number of nonzero entries). The interested reader may
consult [11], [13], [16].

The problem defined in (15) can be restated as

min{ ‖x‖1 : Ax = y, y ≤ b }.

For m = 1, . . . ,M take

pm(y) =
[
ym − bm

]
+

.

Begin with (xk−1, yk−1, µk−1, νk−1) and apply the multiplier prediction steps following (A1):

µ̃k = µk−1 + λk(Axk−1 − yk−1)

and for m = 1, . . . ,M

ν̃k
m =

{
νk−1

m if yk−1
m ≤ bm

νk−1
m + λk(y

k−1
m − bm) otherwise.

Next, the exact primal step with respect to the x-variable

−
xk − xk−1

λk

− A∗µ̃k ∈ ∂f(xk)

reduces to

xk
n =





xk−1
n − λk(A

∗µ̃k)n − λk if xk−1
n − λk(A

∗µ̃k)n > λk

xk−1
n − λk(A

∗µ̃k)n + λk if xk−1
n − λk(A

∗µ̃k)n < −λk

0 if xk−1
n − λk(A

∗µ̃k)n ∈ [−λk, λk]

for n = 1, . . . , N . On the other hand, for the y-variable we have

−
yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃k
m∂pm(yk),

which we rewrite as

yk
m =





yk−1
m + λkµ̃

k
m − λkν̃

k
m if yk−1

m + λkµ̃
k
m − bm > λkν̃

k
m

yk−1
m + λkµ̃

k
m if yk−1

m + λkµ̃
k
m − bm < 0

bm if yk−1
m + λkµ̃

k
m − bm ∈ [0, λk ν̃k

m]
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for m = 1, . . . ,M .

Finally we update the multipliers

µk = µk−1 + λk(Axk − yk)

and for m = 1, . . . ,M

νk
m =

{
νk−1

m if yk
m ≤ bm

νk−1
m + λk(y

k
m − bm) otherwise.

A simple illustration. With no intention to test the numerical performance of the method we
present the following academic example to illustrate the implementation. Let

A =




−1 0 −1 1 0 1
0 −1 0 −1 0 1
0 1 −1 0 1 0

−1 1 0 1 −1 0
1 0 −1 −1 −1 1

−1 −1 0 0 0 1
0 −1 1 −1 −1 1




and b =




−2
−1
−1

0
−2
−1

0




.

The sparsest solution of the system of inequalitites given by Ax ≤ b is

x̂ = (0 0 1 0 0 − 1)′.

We implement our algorithm in SCILAB with λk ≡ 0.4, starting from 10 randomly generated
initial points in [−2, 2]6. The average outcome after 20 iterations was

x̃ = (0 0 1.0052 0 0 − 0.9913)′

and the average processing time was 0.1 seconds in a laptop computer with a U9300 Intel(R)
Core(TM)2 CPU and 3 GB of RAM.

5. Domain decomposition for partial differential equations

Let us consider a bounded domain Ω = Ω1 ∪ Ω2 ∪ Γ of RN which can be decomposed in two
non overlapping Lipschitz subdomains Ω1 and Ω2 with a common interface Γ. We assume that
HN−1(Γ) > 0, where HN−1 is the Hausdorff measure of dimension N − 1. This situation is
illustrated in the next figure.

Ω1 Ω2Γ

Let h ∈ L2(Ω). We consider the following problem

Minimize
{

1
2

∫
Ω1

|∇u|2 −
∫
Ω1

hu + 1
2

∫
Ω2

|∇v|2 −
∫
Ω2

hv
}

;

subject to (u, v) ∈ H1(Ω1) × H1(Ω2) and u|Γ ≥ v|Γ.
(16)

This kind of minimization problems often arises in the description of phenomena where the
boundary is free, i.e. no external action is exerted on ∂Ω, and involving discontinuities through
the interface Γ. Here we consider the problem where the jump when passing from Ω1 to Ω2 is
nonnegative. The case with no condition on the jump through the interface is treated in [1] with
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Dirichlet conditions on the boundary of Ω and in [15] with Neumann conditions. In [6] (respectively
[3]) the authors consider the problem with a no-jump condition through the interface and Dirichlet
conditions on the boundary of Ω (respectively Neumann conditions), which amounts to solving a
Dirichlet problem (respectively Neumann problem) on the whole set Ω by decomposition.
Notice that Problem (16) is not coercive. Under the assumptions

∫
Ω h = 0 and

∫
Ω1

h < 0, we can

use [2, Theorem 15.1.2] to prove the existence of solutions.
Let us now show how the algorithm described by (A1)−(A2′)−(A3) can be applied to solve problem
(16). The space X = H1(Ω1) × H1(Ω2) is equipped with the scalar product 〈(u1, v1), (u2, v2)〉X =∫
Ω1

(∇u1.∇u2 + u1u2) +
∫
Ω2

(∇v1.∇v2 + v1v2) and the corresponding norm. The space Y = L2(Γ)

is equipped with the scalar product 〈y1, y2〉Y =
∫
Γ y1y2 and the associated norm. We denote

respectively A1 : H1(Ω1) → Y and A2 : H1(Ω2) → Y the trace operators on Γ. Problem (16) can
be reformulated as problem (P) with the following notations

(P) min {f(u) + g(v); (u, v) ∈ X, A(u, v) − y = 0, y ∈ C} ,

where

f(u) =
1

2

∫

Ω1

|∇u|2 −

∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −

∫

Ω2

hv, (17)

the operator A : X −→ Y is defined by A(u, v) = A1u − A2v and the set C is the closed convex
cone of the space Y defined by C = {y ∈ Y ; y ≥ 0}. We now describe the computation of the
primal steps. The auxiliary varibles y and ν are used in the computation of the Lagrange multiplier
approximations µ̃k and µk. Their definition depends on the particular choice of the function P .
One can take P (y) = d(y, C), which in this case is the L2-norm of the negative part of y.

Description of the primal steps. A derivative computation allows to express the exact primal
steps 




uk = Argmin
{

f(u) + 〈µ̃k, A1u〉 + 1
2λk

|u − uk−1|2; u ∈ H1(Ω1)
}

vk = Argmin
{

g(v) − 〈µ̃k, A2v〉 + 1
2λk

|v − vk−1|2; v ∈ H1(Ω2)
}

,
(18)

as 



∫
Ω1

∇uk · ∇u + 1
λk

∫
Ω1

∇(uk − uk−1) · ∇u + 1
λk

∫
Ω1

(uk − uk−1)u =
∫
Ω1

hu −
∫
Γ µ̃kA1u

∫
Ω2

∇vk · ∇v + 1
λk

∫
Ω2

∇(vk − vk−1) · ∇v + 1
λk

∫
Ω2

(vk − vk−1)v =
∫
Ω2

hv +
∫
Γ µ̃kA2v,

for all u ∈ H1(Ω1) and v ∈ H1(Ω2). These are the variational weak formulations of the following
mixed Dirichlet-Neumann boundary value problems respectively on Ω1




−(1 + 1
λk

)∆uk + 1
λk

uk = h − 1
λk

∆uk−1 + 1
λk

uk−1 on Ω1

(1 + 1
λk

)∂uk

∂ν
= 1

λk

∂uk−1

∂ν
on ∂Ω1 ∩ ∂Ω

(1 + 1
λk

)∂uk

∂ν
= 1

λk

∂uk−1

∂ν
− µ̃k on Γ,

and Ω2





−(1 + 1
λk

)∆vk + 1
λk

vk = h − 1
λk

∆vk−1 + 1
λk

vk−1 on Ω2

(1 + 1
λk

)∂vk

∂ν
= 1

λk

∂vk−1

∂ν
on ∂Ω2 ∩ ∂Ω

(1 + 1
λk

)∂vk

∂ν
= 1

λk

∂vk−1

∂ν
+ µ̃k on Γ.

Convergence. Since this matter is out of the scope of this paper, we shall not enter into the
details concerning the existence of saddle points here. Instead we shall assume that there are
such points. Under these conditions, any sequence (uk, vk) generated by (18) converges strongly in
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H1(Ω1)×H1(Ω2) to a solution (u, v) of problem (16). Indeed, let ((uk, vk), yk, µk, νk) be a sequence
generated by (A1) − (A2′) − (A3) so that (uk, vk) satisfies (18). In view of Theorem 7, (uk, vk)
converges weakly in H1(Ω1) × H1(Ω2) to a minimum point (u, v) of problem (P). For the strong
convergence, observe that, by the Rellich-Kondrachov Theorem, the sequence (uk, vk) converges to
(u, v) strongly in L2(Ω1) × L2(Ω2). Moreover, from Proposition 9 (ii), we have limk→+∞ f(uk) +
g(vk) = f(u) + g(v), which in turn implies that

lim
k→+∞

∫

Ω1

|∇uk|2 +

∫

Ω2

|∇vk|2 =

∫

Ω1

|∇u|2 +

∫

Ω2

|∇v|2.

As a consequence, we have limk→+∞ |(uk, vk)|H1(Ω1)×H1(Ω2) = |(u, v)|H1(Ω1)×H1(Ω2) and we conclude
that the convergence is strong.

Observe that the algorithm allows to solve the initial problem on Ω by solving separately problems
on Ω1 and Ω2.
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