Publications

29. 📝 Attouch, H.; Peypouquet, J. Convergence  of inertial dynamics and proximal algorithms governed by maximal monotone operators. Under review.

28. 📝 Molinari, C; Peypouquet, J. Lagrangian Penalization Scheme with Parallel Forward-Backward Splitting. Under review.

27. 📝 Molinari, C; Peypouquet, J. An adjoint-based localization algorithm for sparse optimal control of the heat equation via initial data. Under review.

26. 📄 Lazar, M.; Molinari, C; Peypouquet, J. Optimal Control of parabolic equations by spectral decomposition. Optimization 66 (2017), no. 8, 1359-1381. DOI:10.1080/02331934.2017.1307365.

25. 📄 Bolte, J.; Nguyen, T.-P.; Peypouquet, J.; Suter, B. From error bounds to the complexity of first-order descent methods for convex functions. To appear in Mathematical Programming. DOI:10.1007/s10107-016-1091-6. [PDF]

24. 📄 Attouch, H.; Peypouquet, J.; Redont, P. Backward-forward algorithms for structured monotone inclusions in Hilbert spaces. To appear in Journal of Mathematical Analysis and Applications. DOI:10.1016/j.jmaa.2016.06.025. [PDF]

23. 📄 Attouch, H.; Chbani, Z.; Peypouquet, J.; Redont, P. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping. To appear in Mathematical Programming. DOI:10.1007/s10107-016-0992-8. [PDF]

22. 📄 Attouch, H.; Peypouquet, J.; Redont, P. Fast convex optimization via inertial dynamics with Hessian driven damping. Journal of Differential Equations 261 (2016), 5734-5783. DOI:10.1016/j.jde.2016.08.020. [PDF]

21. 📄 Attouch, H; Peypouquet, J. The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than $1/k^2$. SIAM Journal on Optimization 26 (2016), no. 3, 1824-1834. DOI:10.1137/15M1046095. [PDF]

20. 📄 Czarnecki, M.-O.; Noun, N.; Peypouquet, J. Splitting forward-backward penalty scheme for constrained variational problems. Journal of Convex Analysis 23 (2016), no. 2, 531-565. [PDF]

19. 📄 Jélvez, E.; Morales, N.; Nancel-Penard, P.; Peypouquet, J; Reyes, P. Aggregation heuristic for the open-pit block scheduling problem. European Journal of Operational Research 249 (2016), no. 3, 1169-1177. [PDF]

18. 📄 Gajardo, P.; Morales, C.; Peypouquet, J. Monotonicity beyond Minty and Kato on locally convex spaces. Journal of Mathematical Analysis and Applications 435 (2016), no. 2, 1701-1709. [PDF]

17. 📄 Briceño-Arias, L.-M.; Hoang, N.-D.; Peypouquet, J. Existence, stability and optimality for optimal control problems governed by maximal monotone operators. Journal of Differential Equations 260 (2016), no. 1, 733-757. [PDF]

16. 📕 Peypouquet, J. Convex optimization in normed spaces: Theory, methods and examples. With a foreword by Hedy Attouch. Springer Briefs in Optimization. Springer, Cham, 2015. xiv+124 pp. ISBN: 978-3-319-13709-4. [WEB]  [PDF]

15. 📄 Frankel, P.; Garrigos, G.; Peypouquet, J. Splitting methods with variable metric for KL functions and general convergence rates. Journal of Optimization Theory & Applications 165 (2015), no. 3, 874-900. [PDF]

14. 📄 Attouch, H.; Peypouquet, J.; Redont, P. A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM Journal on Optimization 24 (2014), no. 1, 232-256. [PDF]

13. 📕 Peypouquet, J. Optimización y sistemas dinámicos. Ediciones IVIC, 2013, pp viii+84. ISBN 978-980-261-142-3. [PDF]

12. 📄 Noun, N.; Peypouquet, J. Forward-backward penalty scheme for constrained convex minimization without inf-compactness. Journal of Optimization Theory & Applications 158 (2013), no. 3, 787-795. [PDF]

11. 📄 Frankel, P.; Peypouquet, J. Lagrangian-penalization algorithm for constrained optimization and variational inequalities. Set-Valued and Variational Analysis 20 (2012), no. 2, 169-185. [PDF]

10. 📄 Peypouquet, J. Coupling the gradient method with a general exterior penalization scheme for convex minimization. Journal of Optimization Theory & Applications 153 (2012), no. 1, 123-138. [PDF]

9. 📄 Attouch, H.; Czarnecki, M.O.; Peypouquet, J. Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM Journal on Optimization 21 (2011), no. 4, 1251-1274. [PDF]

8. 📄 Attouch, H.; Cabot, A.; Frankel, P.; Peypouquet, J. Alternating proximal algorithms for constrained variational inequalities. Application to domain decomposition for PDE’s. Nonlinear Analysis: Theory, Methods & Applications 74 (2011), no. 18, 7455-7473. [PDF]

7. 📄 Álvarez F.; Peypouquet, J. A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions. Nonlinear Analysis: Theory, Methods & Applications 74 (2011), no. 11, 3440-3444. [PDF]

6. 📄 Attouch, H.; Czarnecki, M.O.; Peypouquet, J. Prox-penalization and splitting methods for constrained variational problems. SIAM Journal on Optimization 21 (2011), no. 1, 149-173. [PDF]

5. 📄 Álvarez F.; Peypouquet, J. Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications 73 (2010), no. 9, 3018-3033. [PDF]

4. 📄 Peypouquet, J.; Sorin, S. Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. Journal of Convex Analysis 17 (2010), no. 3-4, 1113-1163. [PDF]

3. 📄 Álvarez, F.; Peypouquet, J. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete and Continuous Dynamical Systems 25 (2009), no. 4, 1109-1128. [PDF]

2. 📄 Peypouquet, J. Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization. Journal of Convex Analysis 16 (2009), no. 1, 277-286. [PDF]

1. 📄 Cominetti, R.; Peypouquet, J.; Sorin, S. Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization. Journal of Differential Equations 245 (2008), no. 12, 3753-3763. [PDF]